
1 
 

 

HAND GESTURE BASED SMART WHEELCHAIR 

A PROJECT REPORT 

Submitted by 

 

SRI RAMANA.S        (2010505055) 

KOUSHIK.B             (2010505021) 

VIGNESH.B      (2010505063) 

 

Under the guidance of 

Dr.N.PAPPA 

Sponsored under 

RESEARCH SUPPORT SCHEME 

of 

CENTER FOR TECHNOLOGY DEVELOPMENT AND TRANSFER 

ANNA UNIVERSITY 

 

DEPARTMENT OF INSTRUMENTATION ENGINEERING 

JANUARY 2014 

 



2 
 

 

CTDT PROJECT DETAILS 

 

i) Students involved in the project 

Name 
Department/ 

Centre 
Roll Number E-mail Id and Mobile number 

A. SRI RAMANA.S EIE 2010505055 
raminmyst@gmail.com 

+91-9952461750 

B. KOUSHIK.B EIE 2010505021 
kshik.balas@gmail.com 

+91-8056325354 

C. VIGNESH.B EIE 2010505063 
bvignesh2992@gmail.com 
+91-9629921090 

 

ii) Faculty associated with the project 

Name Department/Centre Designation 
Phone/Mobile Number 

& E-mail Id 

Dr.N. Pappa EIE Associate Professor 
+919962560646 

npappa@rediffmail.com 

 

iii) Date of start of the project : 08.06.2013 

 

iv) Duration of the project : 6 months 

 

v) Total approved value : INR 25,000 

 

vi) Amount spent  : INR 17,944 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:raminmyst@gmail.com
mailto:kshik.balas@gmail.com
mailto:bvignesh2992@gmail.com


3 
 

 

1. ABSTRACT OF THE PROJECT 

 The main objective of this project is to construct a wheelchair fitted with a 

robotic arm and to control the same using hand gestures and also the robotic 

arm. This project uses a vision based scheme for gesture recognition. This 

project is aimed at those patients who are paralyzed at the legs and those who 

have weak reflexes. It enables them to move freely by navigating the 

wheelchair and using the same gesture pickup any object in the vicinity by 

controlling the robotic arm. Images taken by camera are processed in laptop and 

serial commands are given to the Arduino. An Arduino is used as the main 

processor to control both the navigation and the robotic arm. A relay circuit 

drives the wheelchair through signals from Arduino. The arm uses inverse 

kinematics to find its appropriate gripper position in 3-D co-ordinate space.  

 

 

 

 

 

 

 

 

 

 



4 
 

TOPIC                   P.NO 

ABSTRACT                                                                                              3 

LIST OF FIGURES                                                                                  7 

1. LITERATURE SURVEY                                                                               8      

1.1 SMART WHEELCHAIR                                                                   8 

1.2 RECENT DEVELOPMENTS 8  

2.WHERE OUR PROJECT STANDS: 10 

  2.1 DEMERITS OF USING NON-VISION TYPE/JOYSTICK BASED    11                     

SMART WHEELCHAIR                                                                                    

  2.2 DEMERITS OF USING HEAD GESTURE BASED SMART                11 

WHEELCHAIR                                                                                                   

  2.3 MERITS OF USING VISION TYPE BASED SMART                           11 

WHEELCHAIR 

 

3. GENERAL INFORMATION: 

3.1 ROBOTIC ARM:                                                                                11 

3.2 TYPES OF ROBOTIC ARMS                                                           12 

3.3 IMAGE PROCESSING                                                                      13 

3.4 OPENFRAMEWORKS                                                                      14 

3.5 ARDUINO                                                                                            15 

 

4. PROJECT WORK  16 

A)  NAVIGATION MODE16 

B) ROBOTIC ARM MODE16 



5 
 

4.1 MODE SELECTION                                                                      22 

4.2 GESTURE RECOGNITION ALGORITHM                               22 

4.2.1 PREPROCESSING22 

4.2.2 DETECTION OF GESTURE FROM THE MATRIX   22 

4.2.3 DECIDING MODES                                                          23 

4.3 IMPLEMENTATION IN OFXOPENCV ADD-ON OF              23                          

OPENFRAMEWORKS 

4.4 SERIAL COMMUNICATION TO THE ARDUINO                   24 

4.5 INVERSE KINEMATICS DERIVATION                                     25 

4.6 HARDWARE IMPLEMENTATION                                              28 

5. CONCLUSION AND FUTURE SCOPE                                                     33 

APPENDICES         

APPENDIX 1                                                                                                      34 

APPENDIX 2                                                                                                      35  

APPENDIX 3                                                                                                      43 

APPENDIX 4                                                                                                      50 

  



6 
 

LIST OF FIGURES:                                                                       PAGE NO: 

1    ROUGH SKETCH OF WHEELCHAIR                                       17 

2.   OVERALL BLOCK DIAGRAM                                                  18 

3.   GESTURES USED IN THIS PROJECT                                       19 

4.   ROBOTIC ARM FREE BODY DIAGRAM                                 25 

5.1. OVERALL HARDWARE BLOCK DIAGRAM                         28   

5.2. RELAY CIRCUIT                                                                         29 

6 .    PICTURE OF ROBOTIC ARM                                                   31 

7.     PICTURE OF WHOLE SETUP                                                   32 

APPENDIX-4 

        GESTURES IN BLACK AND WHITE IMAGES                       50 

  



7 
 

 

  



8 
 

 

1. LITERARTURE SURVEY 

1.1 SMART WHEELCHAIR: 

A smart wheelchair is any motorized platform with a chair designed to assist 

a user with a physical disability, where an artificial control system augments or 

replaces user control. Its purpose is to reduce or eliminate the user's task of driving 

a motorized wheelchair. Usually, a smart wheelchair is controlled by a computer, 

has a suite of sensors and applies techniques in mobile robotics, but this is not 

necessary. The interface may consist of a conventional wheelchair joystick, or it 

may be a "sip-and-puff" device or a touch-sensitive display connected to a 

computer. This is different from a conventional motorized or electric wheelchair, 

in which the user exerts manual control over motor speed and direction via 

a joystick or other switch- or potentiometer-based device, without intervention by 

the wheelchair's control system. 

Smart wheelchairs are designed for a variety of user types. Some platforms 

are designed for users with cognitive impairments, such as dementia, where these 

typically apply collision-avoidance techniques to ensure that users do not 

accidentally select a drive command that results in a collision. Other platforms 

focus on users living with severe motor disabilities, such as cerebral palsy, or 

with quadriplegia, and the role of the smart wheelchair is to interpret small 

muscular activations as high-level commands and execute them. Such platforms 

typically employ techniques from artificial intelligence, such as path-planning. 

 

  1.2 RECENT DEVELOPMENTS: 

Recent technological advances are slowly improving wheelchair and EPW 

technology. Some wheelchairs, such as the  iBOT, incorporate gyroscopic 

technology and other advances, enabling the chair to balance and run on only two 

of its four wheels on some surfaces, thus raising the user to a height comparable to 

a standing person. They can also incorporate stair-climbing and four-wheel-drive 

feature motorized assists for hand-powered chairs are becoming more available 

and advanced. The popular Segway Personal Transporter is a mobility device that 

was a direct outgrowth of the development of the iBOT wheelchair. The Segway, 

which is basically an iBOT with two wheels removed, was developed explicitly to 



9 
 

increase the number of units produced and take advantage of the economies of 

scale to make the iBOT affordable to wheelchair users. The $25,000 iBot, which 

was developed as a joint venture between Johnson’s Independence and Dean 

Kamen's DEKA Research, was discontinued in January 2009. 

A variation on the hand-powered wheelchair is the Leveraged Freedom 

Chair (LFC), designed by the MIT Mobility Lab. This wheelchair is designed to be 

low-cost, constructed with local materials, for users in developing countries. 

Engineering modifications have added hand-controlled levers to the LFC, to enable 

users to move the chair over uneven ground and minor obstacles, such as bumpy 

dirt roads, that are common in developing countries. It is under development, and 

has been tested in Kenya and India so far. 

The addition of geared, all-mechanical wheels for manual wheelchairs is a 

new development incorporating a hypocycloidal reduction gear into the wheel 

design. The 2-gear wheels can be added to a manual wheelchair. The geared 

wheels provide a user with additional assistance by providing leverage through 

gearing (like a bicycle, not a motor). The two-gear wheels offer two speed ratios- 

1:1 (no help, no extra torque) and 2:1, providing 100% more hill climbing force. 

The low gear incorporates an automatic "hill hold" function which holds the 

wheelchair in place on a hill between pushes, but will allow the user to override the 

hill hold to roll the wheels backwards if needed. The low gear also provides 

downhill control when descending. 

Others variants, that are being developed, are listed in the following section. 

A Standing wheelchair is one that supports the user in a nearly standing position. 

They can be used as both a wheelchair and a standing frame, allowing the user to 

sit or stand in the wheelchair as they wish. They often go from sitting to standing 

with a hydraulic pump or electric-powered assist. Some options are provided with 

a manual propel model and power stand, while others have full power, tilt, recline 

and variations of power stand functions available as a rehabilitative medical 

device. The benefits of such device includes, but is not limited to: 

 Raises Independence 

 Raises Self Esteem 

 Heightens Social Status 

 Allows For Easier Communication 

 Extends Access Level 



10 
 

 Improved Quality of Life 

 Increased Pressure Relief Improved functional reach to enable participation in 

ADL 

 Improved Circulation, Enhance independence and productivity 

 Improved Respiration, Maintain vital organ capacity, Reduce occurrence of 

UTI 

 Improved Flexibility, Maintain bone mineral density, Improve passive range 

motion 

 Improved Ease of Transfer, Reduce abnormal muscle tone and spasticity, 

pressure sores 

 Reduce the pressure sores, skeletal deformities, and psychological well being
[6]

 

`   A bariatric wheelchair is one designed to support larger weights; most standard 

chairs are designed to support no more than 250 lbs. (113 kg) on average. 

      Paediatric wheelchairs are another available subset of wheelchairs. Hemi 

wheelchairs have lower seats which are designed for easy foot propulsion. The 

decreased seat height also allows them to be used by children and shorter 

individuals. 

          A power-assisted wheelchair is a recent development that uses the frame & 

seating of a typical manual chair while replacing the standard rear wheels with 

wheels that have small battery-powered motors in the hubs. A floating rim design 

senses the pressure applied by the users push & activates the motors 

proportionately. This result in the convenience, small size & light-weight of a 

manual chair while providing motorised assistance for rough/uneven terrain & 

steep slopes that would otherwise be difficult or impossible to navigate, especially 

by those with limited upper-body function. 

2. WHERE OUR PROJECT STANDS: 

     Though there are many sophisticated devices they are not much accessible to 

the middle class people and most of them are still in the development stage or high 

end devices that are applicable only to aristocratic people. Our solution is rather a 

middle level cost solution that incorporates navigation and arm control using vision 

based gesture. Below we list some of the merits of our method in comparison with 

similar techniques that are implemented throughout the world.    

 

http://en.wikipedia.org/wiki/Wheelchair#cite_note-karmanhealthcare.com-6


11 
 

2.1  DEMERITS
 
OF USING NON-VISION TYPE/ JOYSTICK BASED                                           

SMART WHEELCHAIR: 

• Needs complex wrist movement[2] 

• Improper control may lead to accidents.[2] 

• Difficult for elderly and certain disabled person because they lack the 

necessary motor skills, strength, or visual acuity.[2] 

• User needs to wear  gloves fitted with many flex sensors and wires and is 

very uncomfortable [2] 

• Only limited no. of gestures possible. 

2.2 DEMERITS
 

OF USING HEAD GESTURE BASED SMART 

WHEELCHAIR: 

• Head gesture-the response of the wheelchair is too slow due to the 

processing time, the occupant has to keep looking in that direction until the 

wheelchair reacts which might cause discomfort towards the user.[2] 

•  This method restricts the free head and gaze movement. 

 

2.3 MERITS
 

OF USING VISION TYPE BASED SMART 

WHEELCHAIR: 

• Free bare hand movement no gloves or sensors needed. 

• Simple design with a single camera. 

• Allows large no. of gestures that can be used for various controlling 

purposes. 

• Only method that can be used for sign language communication.  

3. GENERAL INFORMATION: 

3.1 ROBOTIC ARM: 

A robotic arm is a type of mechanical arm, usually programmable, with 

similar functions to a human arm; the arm may be the sum total of the mechanism 

or may be part of a more complex robot. The links of such a manipulator are 



12 
 

connected by joints allowing either rotational motion (such as in an articulated 

robot) or translational (linear) displacement.
 
The links of the manipulator can be 

considered to form a kinematic chain. The terminus of the kinematic chain of the 

manipulator is called the end effector and it is analogous to the human hand. 

The end effector, or robotic hand, can be designed to perform any desired 

task such as welding, gripping, spinning etc., depending on the application. For 

example robot arms in automotive assembly lines perform a variety of tasks such 

as welding and parts rotation and placement during assembly. In some 

circumstances, close emulation of the human hand is desired, as in robots designed 

to conduct bomb disarmament and disposal. 

 

3.2 TYPES OF ROBOTIC ARMS: 

 CARTESIAN ROBOT / GANTRY ROBOT: Used for pick and place work, 

application of sealant, assembly operations, handling machine tools and arc 

welding. It's a robot whose arm has three prismatic joints, whose axes are 

coincident with a Cartesian coordinator. 

 CYLINDRICAL ROBOT: Used for assembly operations, handling at machine 

tools, spot welding, and handling at die casting machines. It's a robot whose 

axes form a cylindrical coordinate system. 

 SPHERICAL ROBOT / POLAR ROBOT (SUCH AS THE UNIMATE): Used 

for handling at machine tools, spot welding, die casting, fettling machines, gas 

welding and arc welding. It's a robot whose axes form a polar coordinate 

system. 

 SCARA ROBOT: Used for pick and place work, application of sealant, 

assembly operations and handling machine tools. This robot features two 

parallel rotary joints to provide compliance in a plane. 

 ARTICULATED ROBOT: Used for assembly operations, die casting, fettling 

machines, gas welding, and arc welding and spray painting. It's a robot whose 

arm has at least three rotary joints. 

 PARALLEL ROBOT: One use is a mobile platform handling cockpit flight 

simulators. It's a robot whose arms have concurrent prismatic or rotary joints. 



13 
 

 ANTHROPOMORPHIC ROBOT: Similar to the robotic hand Luke 

Skywalker receives at the end of The Empire Strikes Back. It is shaped in a way 

that resembles a human hand, i.e. with independent fingers and thumbs. 

 

3.3 IMAGE PROCESSING: 

Image processing refers to processing of a 2D picture by a computer.  

An image defined in the “real world” is considered to be a function of two 

real variables, for example, a(x,y) with a as the amplitude (e.g. brightness) of the 

image at the real coordinate position (x,y). 

Modern digital technology has made it possible to manipulate multi-

dimensional signals with systems that range from simple digital circuits to 

advanced parallel computers. The goal of this manipulation can be divided into 

three categories: 

 Image Processing (image in -> image out) 

 Image Analysis (image in -> measurements out) 

 Image Understanding (image in -> high-level description out) 

An image may be considered to contain sub-images sometimes referred to as 

regions-of-interest, ROIs, or simply regions. This concept reflects the fact that 

images frequently contain collections of objects each of which can be the basis for 

a region. In a sophisticated image processing system it should be possible to apply 

specific image processing operations to selected regions. Thus one part of an image 

(region) might be processed to suppress motion blur while another part might be 

processed to improve colour rendition. Sequence of image processing: 

Most usually, image processing systems require that the images be available in 

digitized form, that is, arrays of finite length binary words. For digitization, the 

given Image is sampled on a discrete grid and each sample or pixel is quantized 

using a finite number of bits. The digitized image is processed by a computer. To 

display a digital image, it is first converted into analog signal, which is scanned 

onto a display. 

Closely related to image processing are computer graphics and computer 

vision. In computer graphics, images are manually made from physical models of 

objects, environments, and lighting, instead of being acquired (via imaging devices 

such as cameras) from natural scenes, as in most animated movies. Computer 

vision, on the other hand, is often considered high-level image processing out of 

which a machine/computer/software intends to decipher the physical contents of an 



14 
 

image or a sequence of images (e.g., videos or 3D full-body magnetic resonance 

scans). 

In modern sciences and technologies, images also gain much broader scopes 

due to the ever growing importance of scientific visualization (of often large-scale 

complex scientific/experimental data). Examples include microarray data in 

genetic research, or real-time multi-asset portfolio trading in finance. 

Before going to processing an image, it is converted into a digital form. 

Digitization includes sampling of image and quantization of sampled values. After 

converting the image into bit information, processing is performed. This 

processing technique may be Image enhancement, Image restoration, and Image 

compression. 

 

3.4 OPENFRAMEWORKS: 

Open Frameworks is an open source C++ toolkit designed to assist the creative 

process by providing a simple and intuitive framework for experimentation. The 

toolkit is designed to work as general purpose glue, and wraps together several 

commonly used libraries, including: 

 OpenGL, GLEW, GLUT, libtess2 and cairo for graphics 

 rtAudio, PortAudio, OpenAL and Kiss,FFT or FMOD for audio input, 

output and analysis 

 FreeType for fonts 

 FreeImage for image saving and loading 

 Quicktime, GStreamer and videoInput for video playback and grabbing 

 Poco for a variety of utilities 

 OpenCV for computer vision 

 Assimp for 3D model loading 

The code is written to be massively cross-compatible. Right now it supports five 

operating systems (Windows, OSX, Linux, iOS, Android) and four IDEs (XCode, 

Code::Blocks, and Visual Studio and Eclipse). The API is designed to be minimal 

and easy to grasp. 

Open Frameworks is distributed under the MIT License. This gives everyone 

the freedoms to use open Frameworks in any context: commercial or non-



15 
 

commercial, public or private, open or closed source. While many 

openFrameworks users give their work back to the community in a similarly free 

way , there is no obligation to contribute. 

Simply put, openFrameworks is a tool that makes it much easier to make 

things with code. It is super useful for image processing techniques. 

 

3.5 ARDUINO: 

Arduino is an open source platform for development of applications. 

Arduino can sense the environment by receiving input from a variety of sensors 

and can affect its surroundings by controlling lights, motors, and other actuators. 

The microcontroller on the board is programmed using the Arduino programming 

language (based on Wiring) and the Arduino development environment (based 

on Processing). Arduino projects can be stand-alone or they can communicate with 

software running on a computer (e.g. Flash, Processing, and MaxMSP). 

The boards can be built by hand or purchased preassembled; the software can 

be downloaded for free. The hardware reference designs (CAD files) 

are available under an open-source license, we are free to adapt them to your 

needs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



16 
 

 

4. PROJECT WORK: 

A semi-autonomous hand gesture controlled wheelchair that works in two 

modes.(Fig 1) 

• Navigation Mode 

• Robotic Arm Mode.  

A)  NAVIGATION MODE: 

• The Control of the wheelchair motion is done by simply using easy to 

remember finger gestures.  

• If index finger points forward, the wheelchair moves forward. Else it turns. 

• At any point in time, a particular gesture causes the wheelchair to stop.   

 

B) ROBOTIC ARM MODE: 

• The arm, that we have constructed, is a 3DOF arm 

• The wheelchair has 2DOF. The arm has totally 5 DOF since it will be 

remain attached to the wheelchair. 

• The arm is also controlled by hand gestures to pick any object in the vicinity. 

Imagine a user who cannot walk sitting in the wheelchair, and wants to grab 

a mug of coffee from the table at the far end of the room. He brings the 

wheelchair to the navigation mode by using the stop gesture followed by the 

pointer finger that stands for mode-1.Now he  points his finger in the direction 

of the mug, the wheelchair moves smoothly towards the mug, once it is near the 

mug he makes the stop gesture. The wheelchair stops immediately. Now  he is 

near the mug, but he cannot reach out and grab the mug. He chooses the mode 

selection or stop gesture to choose the robotic arm mode. Then he uses his 

fingers to navigate the gripper near the coffee mug and uses the ‘grab’ gesture 

to grab the mug. Then uses his finger to bring it near him and uses the ungrab 

gesture to place the mug on his other hand. 



17 
 

  

 

 

 

 

 

 TOP VIEW                                                       SIDE VIEW 

Fig 1 

 

 

 

 

 

 

 



18 
 

 

 

 

 

BLOCK DIAGRAM: 

 

Fig 2 

The overall block diagram of the setup is given in the Fig 2.The hand 

gestures are read as images through the camera attached to the wheelchair. Then, 

they are processed by the algorithm and then a control character is sent to Arduino 

by serial communication. The Arduino controls both the arm and the wheelchair 

based on its reception of the control character. 

                



19 
 

GESTURES USED IN THE PROJECT:(See appendix for more details 7.4) 

 

Fig 3.1 

 

 

 

   

 

 

 

 

 

 

 

 

Fig 3.2 

Nav Mode and 
Arm mode: 
1.Go Right 
2.Go Straight 
3.Go left 

R 

S 

L 



20 
 

 

 

 

 

  

 

 

 

 

 

Fig 3.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.4 

Both modes: 
Reverse 

Rev 

Grab 

Ungrab 

GRIPPER GRAB 

and UNGRAB 



21 
 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.5 

 

 

 

 

 

Stop 

 

 

 

 

 

 

Fig 3.6 

D 

Rev 

U 

Gripper  UP , 

DOWN  and 

Reverse 

STOP: 

A FIST IS MADE TO STOP 

IMMEDIATELY AND TO 

SELECT MODES 

 

 

 

 



22 
 

4.1 MODE SELECTION: 

       Whatever be the robots current position a stop gesture brings everything to a 

stop. Then a ‘pointer finger gesture or Go straight’ switches the wheelchair to the 

navigation mode. Instead a ‘Grab gesture’ switches the wheelchair to robotic arm 

control mode. 

 

 

4.2 GESTURE RECOGNITION ALGORITHM: 

4.2.1 PREPROCESSING:  

1. It converts the colour image into a black and white image. 

2. Define a matrix of size number of rows x 3. 

3. The first column represents the number of columns to be taken for 

calculation. 

4. The algorithm scans all rows and for every white to black and black to white 

transition, it records the centre pixel. 

5. Then, it stores the number of times this transition occurs in the first column 

and the subsequent centre pixel as per the number of column indicated by 

the first column entry. 

4.2.2 DETECTION OF GESTURE FROM THE MATRIX:  

1. It is based on priority. 

2. For the rows containing one pixel, the slope of line formed is taken as the 

angle of the finger. 

3. If the column contains more than two pixels per row, then it is taken as 

gesture 2. 

4. If first half of screen is empty, then the second half of the screen is examined 

for either the stop or up/down/reverse gesture.  

5.  



23 
 

4.2.3 DECIDING MODES: 

1. At any point in time, stop gesture brings back the user to mode selection. 

2. The program waits for any one gesture. 

3. The ‘go straight’ gesture  indicates navigation mode. 

4. The ‘Grab’ gesture indicates robotic arm mode. 

4.3 IMPLEMENTATION IN OFXOPENCV ADD-ON OF                                                    

OPENFRAMEWORKS: 

 The openframe works is a software framework that supports computer                                                                                 

vision using ofxopencv addon that contains opencv libraries for vision 

application.The structure of opencv is that there are three important source 

files  

  1.main.cpp 

  2.testapp.cpp 

  3.testapp.h 

The testapp.h and testapp.cpp is where we implement our program. 

The main() is used to call the testapp.c as the procedure given below. 

The testapp.h() is used to declare all the variables to be used by the testapp.c 

and also derive objects of predefined classes such as ofVideograbber , 

ofxcvcolorimage,..etc. 

The testapp.c contains lots of predefined function for interfacing with PC 

such as functions that are executed during mouseclick, keypress etc. It has 

three most important functions 

1.void setup() 

2.void update() 

3.void draw() 

The setup() is executed only once at the starting of the program this is where 

we initialise all variables. 



24 
 

The update() is executed for every cycle continuously . It carries out all the 

non-graphics relate processing functions this is where we get the video 

grabber to get the incoming image and perform gesture recognition using the 

gesreg() function .We also perform the serial communication to the Arduino 

using ofserial class of openframeworks, based on the character that is 

returned from the gesreg() . 

 

The draw() function is also executed on every iteration.It is where all the 

graphics related processing is done. In our project there is not much graphics 

required other that to simply display the image on the laptop screen. 

 (See appendix for program ). 

    

4.4 SERIAL COMMUNICATION TO THE ARDUINO: 

•  The gestures are communicated serially to arduino. 

• The arduino takes decision based on the serially communicated value. 

• It controls the wheelchair movement. 

• It calculates inverse kinematics for the arm and drives the servo. 

      (See appendix for program). 

 

 

 

 

 

 

 

 



25 
 

4.5 INVERSE KINEMATICS DERIVATION: 

 

Fig 4 

 The mathematics of calculating the servo angles given the set of (x,y,z) co-

ordinates is called inverse kinematics. 

Let us shift the down by 

y = y - l0 

First, we have to calculate the angle α of the base servo motor using the formula 

α = -tan
-1

(x/z) or (π - tan
-1

(x/z)); 

Now we calculate the x-co-ordinate when we rotate the arm back to the x-y plane. 

x = x/(sinα); 

 

Since this is a 3-DOF arm 

L1cosɸ+L2sinθ=x ------------------(1) 

L1sinɸ-L2cosθ=y ------------------(2) 

Multiply (1) by cosθ and (2) by sinθ  

xcosθ+ysinθ=L1cosɸcosθ +L1sinɸsinθ 

xcosθ+ysinθ=L1cos(ɸ    -----------------(3) 

Multiply (1) by sinθ and (2) by cosθ 

xsinθ+ycosθ=L1cosɸinθ-L1sinɸcosθ+L2(cos
2 
θ+sin

2
θ) 



26 
 

                   =L1cosɸinθ-L1sinɸcosθ+L2 

xsinθ+ycosθ=L2-L1sin(ɸ-θ) ------------------(4) 

squaring (3) and (4) on both sides 

x
2
(cos

2
θ+sin

2
θ)+y

2
(sin

2
θ+cos

2
θ) = L1

2
cos

2
(ɸ      2

+L1
2
sin

2
(ɸ-θ)-2L1L2sin(ɸ-

θ) 

x
2
+y

2
=L1

2
+L2

2
-2L1L2sin(ɸ-θ) 

2L1L2sin(ɸ-θ)=L1
2
+L2

2
-x

2
-y

2 

sin(ɸ-θ)=(L1
2
+L2

2
-x

2
-y

2
)/2L1L2 

ɸ-θ=sin
-1

((L1
2
+L2

2
-x

2
-y

2
)/2L1L2) 

assume f=(L1
2
+L2

2
-x

2
-y

2
)/2L1L2 

ɸ-θ=sin
-1

f 

θ= ɸ- sin
-1

f 

sub θ in (1) 

L1cosɸ+L2sin(ɸ- sin
-1

f)=x 

(L1-L2f)cosɸ+L2cos(sin
-1

f) sinɸ=x -------------------------(5) 

It is of the form  

 

Acosɸ+Bsinɸ=C 

Then  

R* sin(ɸ+α)=C; where R= sqrt(A
2 
+ B

2
) and α=tan

-1
(A/B) 

ɸ= sin
-1

(C/sqrt(A
2 
+ B

2
)) – tan

-1
(A/B); 

ɸ=sin
-1

(x/sqrt((L1-L2f)
2
+L2

2
cos

2
(sin

-1
f)))-tan

-1
((L1-L2f)/L2cos(sin

-1
f))) 

If y is +ve then we use the formula for (5) as 

Acosɸ+Bsinɸ=C 

Then  

R* cos(ɸ-α)=C; where R= sqrt(A
2 
+ B

2
) and α=tan

-1
(B/A) 

ɸ= cos
-1

(C/sqrt(A
2 
+ B

2
)) – tan

-1
(B/A); 



27 
 

ɸ=cos
-1

(x/sqrt((L1-L2f)
2
+L2

2
cos

2
(sin

-1
f)))+tan

-1
(L2cos(sin

-1
f)/(L1-L2f))) 

to uncover different solution from the solution space. 

Using ɸ, θ can be calculated as 

θ= ɸ- sin
-1

f; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



28 
 

4.6 HARDWARE IMPLEMENTATION: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ARDUINO UNO 

 

 

 

 

SPDT RELAY 

MOTOR DRIVER 

CIRCUIT 

MOTOR 1 

MOTOR 2 

L293D 
MOTOR 

DRIVER 

GRIPPER 

MOTOR 

SERVO 1 

SERVO 2 

SERVO 3 

U
SB

 C
A

B
LE 

Fig 5.1 



29 
 

RELAY CIRCUIT DIAGRAM: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

5V 

5V 

5V 

 

5V 

NC NO NC NO

OO

O 

NC NO NC NO 

12V 

Arduino I/P 

RELAY 
RELAY 

RELAY RELAY 

M1 

M2 

Fig 5.2 



30 
 

 

 The overall circuit diagram of the project can be seen in Fig 5.1 . The project 

is implemented by using a webcam attached to a laptop that contains the gesture 

recognition program in open frameworks . The gesture area shown in the diagram 

is the area of focus for the camera. This is the region within which the user has to 

realize the finger gesture .So the camera continuously captures frames and feeds it 

to the laptop that does the image processing. 

       The laptop is serially connected to a ARDUINO UNO BOARD that acts as 

the main processor. It is powered from the USB .There are several pins in the 

board that perform both I/O operation and Pulse Width Modulation (PWM) 

required for servo controls. The Arduino pins 3,6,7 functions as both I/O and 

PWM but we use it as the latter to connect to the servo motor signal pin for the 

robotic arm. 

     The wheelchair is modified and fitted with a wiper motor of sufficient torque to 

drive the person-loaded wheelchair. The power supply for the wheelchair is from a 

high current 12V battery. The I/O pins of the Arduino 4, 8, 9, 10 are used to 

control the wheelchair motor through the relay circuit (Fig 5.2).  

     A relay circuit consisting of four SPST relays connected and controlled in such 

a way that the power supply is made to flow so as to change the direction of the 

motor. Since the wheelchair uses a differential drive  technique for navigation, four 

Arduino signals are sufficient for two wheels. 



31 
 

 

Fig 6 

    The robotic arm is a 3-DOF arm with a base servo motor rotating on z-axis and 

shoulder and a elbow servo for planar motion. The base servo changes the plane of 

motion and hence a range of 3-D space can be traversed using this setup and 

depending on the length of each arm. It is found that a servo motor of torque 

15kgcm is sufficient for all the joints. An end effector also called the gripper is 



32 
 

fixed at the end of the robotic arm and it is driven by a bomotor which is an 

ordinary D.C motor of low rpm.  

    The power supply for the robotic arm is from an ordinary lead acid 12V battery. 

The servo-motor operates at a voltage of 4.8-6V hence a 7806 IC is used to bring it 

down to 6-V and then is given to the supply pin of the servo-motor. There is also a 

L293D for driving the gripper bomotor under 12V. This is also controlled by the 5, 

12 pins of the arduino.  

 

Fig 7 

  



33 
 

 5.1 CONCLUSION 

 The above method employed was able to control both the arm and the 

wheelchair. In spite of certain absurdities in the logic, we were able to correct them 

and were able to perform the navigation and gripper movement using the arm 

successfully. The Arduino controller worked accordingly to give the right control 

signals and the actuators worked as expected.     

 

5.2 FUTURE SCOPE THE PROJECT   

 Despite our success in the proposed work, there is still a lot of scope for 

improvement. The arm can be designed such that it not only picks and places 

objects for the patient but also feeds them. The wheelchair can be connected to a 

GPS system so that the patient’s kith and kin know the location of the patient. 

Another gesture can be added which send an insecurity sign to the patient’s 

immediate relatives. This may help them to prevent any untoward incident.   

    

 

 

 

 

 

 

 

 

 

 

 

 



34 
 

APPENDICES: 

APPENDIX 1 

 HEADER PROGRAM: 

         #pragma once 

         #include "ofMain.h" 

 #include "ofxOpenCv.h" 

 class testApp : public ofBaseApp{ 

          public: 

          void setup(); 

          void update(); 

 void draw();   

 ofVideoGrabber vid; 

 ofxCvColorImage color; 

 ofxCvGrayscaleImage gr; 

 int h,w,times,timesb,tim;  

 double ges; 

 bool mode,stop; 

 double the; 

 unsigned char * pix; 

 ofSerial serial; 

}; 

 

 

 

 

 

 



35 
 

APPENDIX 2 

 PROGRAM: 

#include "testApp.h" 

//The gesreg function performs the recognition task and returns a double integer 

double gesreg(unsigned char *pix,int w,int h) 

{ 

 bool tog=0; 

 long int sum=0,i=0,j=0; 

  int avg=0,mat[240][3],m=0; 

 double the=0; 

 for(i=0;i<w*h;i++) 

 sum+=pix[i]; 

 avg=sum/(i); 

//Make it a black and white image 

  for(i=0;i<w*h;i++) 

 { 

 if(pix[i]>(avg/1.5)) 

 pix[i]=255; 

 else 

 pix[i]=0; 

  } 

//Main algorithm starts here 

for(i=0;i<h;i++) 

{ 

 avg=0;sum=0;tog=0;m=1;mat[i][0]=0; 

 for(j=0;j<w;j++) 

 { 



36 
 

 if(pix[i*w+j]==tog*255 && ((j-sum)>5 || sum==0 ) && m<3 ) 

 { 

 if(tog==0) 

 { 

 mat[i][0]++; 

 } 

 else 

 { 

 mat[i][m++]=(sum+j)/2; 

 if((j-sum)>150) 

 { 

 mat[i][0]=10; 

 } 

 } 

 sum=j; 

 tog=!tog;  

 } 

 } 

} 

//Deriving the gesture from the matrix 

sum=0;avg=0; 

int stop=0,updwn=0,zero=0,real=0; 

for(i=0;i<h;i++) 

{ 

 if(mat[i][0]==1 && i<h/2) 

 sum++; 

        if(mat[i][0]==2 && i<h/2) 



37 
 

        avg++; 

        if(i>h/2) 

       { 

       if(mat[i][0]==1) 

       updwn++; 

      else if(mat[i][0]==10) 

      stop++; 

     else if(mat[i][0]==2) 

      real++; 

     else 

     zero++; 

      } 

 } 

 if((h/2-sum) < 80) 

{  

     int temp=0; 

     for(j=1;j<h/2 && mat[j][0]==1;j++) 

{    

 the+=atan2((float)(mat[j][1]-temp),1); 

 temp=mat[j][1]; 

} 

 the=the/sum; 

 return the; 

} 

else if((h/2-avg) < 50) 

 { 

 return 4.0000; 



38 
 

 } 

else if((real>updwn) && (real>stop)) 

 {   return 16.00000; 

 } 

else if(updwn>stop) 

 { 

           int temp=0,ff=1; 

   the=0; 

 for(j=h/2;j<h && mat[j][0]==1;j++) 

 {      if(!ff) 

 the+=atan2((float)(mat[j][1]-temp),1); 

 temp=mat[j][1]; 

 ff=0; 

 } 

 the=the/updwn; 

 return (the+12); 

 } 

 else if(updwn<stop) 

 { 

 return 5; 

 } 

 else 

 { 

 return 10; 

         } 

   }  

 



39 
 

 

 

//-------------------------------------------------------------- 

void testApp::setup() 

{ 

 w=320;h=240;mode=0;ges=0,stop=1;times=7;timesb=0;tim=10; 

 int baud = 9600; 

 serial.setup("COM6", baud); //intialise serial communication 

 vid.setVerbose(true); 

 vid.listDevices(); 

 vid.setDesiredFrameRate(1); 

        vid.initGrabber(w,h); 

 color.allocate(w,h); 

 gr.allocate(w,h); 

} 

//-------------------------------------------------------------- 

void testApp::update(){ 

 unsigned char getserial[3]; 

 memset(getserial,0,3); 

 vid.grabFrame(); 

 if(vid.isFrameNew() && !(tim--)) 

 { 

 tim=20; 

 color.setFromPixels(vid.getPixels(), w,h); 

        gr = color; 

 pix=gr.getPixels(); 

 ges=gesreg(pix,w,h); 



40 
 

 if(ges==5) 

 { 

 serial.writeByte('n'); 

 stop=0; 

 } 

 if(!stop && !(times--)) 

 { 

 times=7; 

 if(ges>-0.2 && ges <.2) 

 { 

 stop=1; 

 mode=0; 

 serial.writeByte(mode+48); 

 } 

 else if(ges==4) 

 { 

 mode=1;timesb=0;stop=1; 

 serial.writeByte(mode+48); 

 } 

 } 

 if(stop) 

 { 

 int alt=0; 

          if(ges>11) 

   { 

   ges=ges-12; 

   alt=1; 



41 
 

    } 

    if(ges==4 && !(timesb--)) 

    { 

    timesb=0; 

    if(!alt) 

  serial.writeByte('G'); 

    else  

 serial.writeByte('C');      

    } 

 else if(ges>-0.2 && ges <.2) 

 { 

 timesb=0; 

 if(!alt) 

 serial.writeByte('S'); 

 else 

 serial.writeByte('B'); 

 } 

 else if(ges>-.45 && ges<-.2) 

 { 

 timesb=0; 

 if(!alt) 

 serial.writeByte('L'); 

 else 

 serial.writeByte('U'); 

 } 

 else if(ges>.2 && ges<.45) 

 { 



42 
 

 timesb=0; 

 if(!alt) 

 { 

 serial.writeByte('R'); 

 } 

 else 

 { 

 serial.writeByte('D'); 

 } 

         } 

 else if(ges==4) 

 serial.writeByte('C'); 

 else if(ges==5) 

 serial.writeByte('n'); 

 else  

 serial.writeByte('o'); 

 } 

 if(serial.available()) 

 { 

 serial.readBytes(getserial,3); 

 cout<<getserial; 

 } 

 gr.setFromPixels(pix,w,h); 

 } 

} 

//-------------------------------------------------------------- 

void testApp::draw(){ 



43 
 

 { 

 gr.draw(w,h); 

  ofFill(); 

 } 

} 

 

 

APPENDIX 3 

7.3 ARDUINO PROGRAM :                                                                      

#include <Servo.h> 

#define lb .30 

#define le .19 

#define lw .28 

#define gmp 12 

#define gmn 5 

#define mlp 4 

#define mln 8 

#define mrp 9 

#define mrn 10 

#define led 13 

Servo sbas,sfst,ssec; 

char ch='\0'; 

float c[3]={0}; 

int t=0,mode=0,stp=0,in=0,gbt=0; 

float x=0,y=0,z=0; 

void gost() 

{ 



44 
 

digitalWrite(mlp,HIGH);digitalWrite(mrp,HIGH);digitalWrite(mln,LOW);digital

Write(mrn,LOW);digitalWrite(led,HIGH); 

} 

void golt() 

{ 

digitalWrite(mlp,LOW);digitalWrite(mrp,HIGH);digitalWrite(mln,HIGH);digital

Write(mrn,LOW);digitalWrite(led,LOW); 

} 

void gort() 

{ 

digitalWrite(mlp,HIGH);digitalWrite(mrp,LOW);digitalWrite(mrn,HIGH);digital

Write(mln,LOW);digitalWrite(led,LOW); 

} 

void halt() 

{ 

digitalWrite(mrp,LOW);digitalWrite(mlp,LOW);digitalWrite(mrn,LOW);digitalW

rite(mln,LOW); 

} 

void rev() 

{ 

digitalWrite(mrn,HIGH);digitalWrite(mln,HIGH);digitalWrite(mrp,LOW);digital

Write(mlp,LOW); 

} 

void setup() 

{   

  Serial.begin(9600); 

  pinMode(gmp,OUTPUT); 



45 
 

  pinMode(gmn,OUTPUT); 

   pinMode(mlp,OUTPUT); 

  pinMode(mln,OUTPUT); 

  pinMode(mrp,OUTPUT); 

  pinMode(mrn,OUTPUT); 

  sbas.attach(3,544,2500); 

  sfst.attach(6,544,2500); 

  ssec.attach(7,544,2500); 

  sbas.write(90); 

  sfst.write(180); 

  ssec.write(180); 

   

} 

void loop() 

{ 

 if(Serial.available()>0) 

  { 

    ch=Serial.read(); 

Serial.write(ch); 

 while(Serial.read()!=-1); 

if(ch=='1' || ch=='0' || ch=='S' || ch=='R' || ch=='L' || ch=='U' || ch=='D' || ch=='B' || 

ch=='r' || ch=='n' || ch=='G' || ch=='C') 

  { 

  float st=.005; 

  if(ch=='n') 

  { 

    stp=1; 



46 
 

    halt(); 

  } 

  if(ch=='1' || ch=='0') 

  { 

    mode=ch-48; 

    stp=0; 

  } 

 

  if(mode==0) 

 { 

   switch(ch) 

  { 

    case 'S':gost();break; 

    case 'R':gort();break; 

    case 'L':golt();break; 

    case 'B':rev();break; 

  } 

 } 

    

 else if(mode==1) 

  { 

    if(in==0) 

    { 

    got(.04,.2,0); 

    in=1; 

    } 

    getpos(&x,&y,&z);  



47 
 

  switch(ch) 

  { 

    case 'S': 

    if(x<.30) 

    got(x+st,y+st/3,z);break; 

    case 'B': 

    if(x>.04) 

    got(x-st,y+st/3,z+st/4);break; 

    case 'L': 

    if(z>-.1) 

    got(x,y+st/4,z-st);break; 

    case 'R': 

    if(z<.1) 

    got(x,y+st/4,z+st);break; 

    case 'U': 

    got(x+st/4,y+st,z+st/6);break; 

    case 'D': 

   if(y>.01) 

    got(x+st/4 ,y-st,z+st/6);break; 

    case 'r':sbas.write(90);sfst.write(180);ssec.write(180);break; 

    case 'G':  

     { 

              digitalWrite(gmp,HIGH); 

                digitalWrite(gmn,LOW); 

                delay(40); 

                digitalWrite(gmp,LOW);digitalWrite(gmn,LOW); 

      }break; 



48 
 

     case 'C':          

              { 

                digitalWrite(gmp,LOW); 

                digitalWrite(gmn,HIGH); 

                delay(40); 

                digitalWrite(gmp,LOW);digitalWrite(gmn,LOW); 

              } 

  } 

} 

} 

} 

} 

//function that makes gripper to move to a particular location 

void  got(float x,float y,float z) 

{ 

  float p=0,t=0,a=0; 

 y=lb-y; 

 if(z>=0) 

 { 

   a=(3.14-atan(x/z)); 

   x=x/sin(3.14-a); 

 } 

else 

{ 

    a=-atan(x/z); 

    x=x/sin(a); 

} 



49 
 

   a=(int)(a*180/3.14); 

  float f=(le*le+lw*lw-x*x-y*y)/(2*le*lw); 

  if(y>0) 

  p=asin(x/(sqrt(pow((le-lw*f),2)+pow(lw*(cos(asin(f))),2))))-atan((le-

lw*f)/(lw*cos(asin(f)))); 

 else 

{   

p=acos(x/(sqrt(pow((lelw*f),2)+pow(lw*(cos(asin(f))),2))))+atan((lw*cos(asin(f))/

(le-lw*f))); 

} 

 t=(p-asin(f))*180/3.14; 

 p=(int)(90+p*180/3.14); 

 t=(int)(t-p+180)%360; 

if(abs(a-sbas.read())>35 || abs((180-p)-sfst.read())>35 || abs(((180-t)-

sec.read()))>35) 

  { 

    int cnt=40; 

while(((abs(a-sbas.read())>10 || abs((180-p)-sfst.read())>10 || abs(((180-t)-  

ssec.read()))>10)) && cnt) 

    { 

    sbas.write(sbas.read()+(a-sbas.read())/30); 

    sfst.write(sfst.read()+((180-p)-sfst.read())/30); 

    ssec.write(ssec.read()+((180-t)-ssec.read())/30); 

    cnt--; 

    delay(200); 

   } 

   } 



50 
 

  sbas.write(a); 

  sfst.write(180-p); 

  ssec.write(180-t); 

  } 

//function to get current position of gripper 

void getpos(float  *x,float *y, float  *z) 

{ 

  int a=sbas.read(),p=180-sfst.read(),t=180-ssec.read(); 

*x=le*cos((float)(p-90)*3.14/180)+lw*sin((float)(t-90+(p-90))*3.14/180); 

*y=lb+le*sin((float)(p-90)*3.14/180)-lw*cos((float)(t-90+(p-90))*3.14/180); 

*z=cos((float)(180-a)*3.14/180)*(*x); 

*x=sin((float)((180-a))*3.14/180)*(*x); 

} 

 

APPENDIX 4 

 GESTURES IN BLACK AND WHITE IMAGES: 

 

 

 

STOP 

GESTURE 

  



51 
 

 

 

 

GO 

STRAIGHT 

  

 

 

 

 

GO RIGHT 

  

 

 

 

GO LEFT 

  



52 
 

 

 

 

 

REVERSE 

  

 

 

 

 

GRIPPER UP 

  

 

 

 

GRIPPER 

DOWN 

 
 



53 
 

 

 

 

GRAB 

  

 

 

 

UNGRAB 

  

 

      

  

REFERENCES 

1. P. Schrock, F. Farelo, R. Alqasemi, and  R. Dubey  (2009) “Design, 

Simulation and Testing of a New Modular Wheelchair mounted Robotic 

Arm to Perform Activities of Daily Living”                                                                               

-ICORR  

2. Seong Pal Kang, “Virtual Human-Machine Interfaces and Intelligent 

Navigation of Wheelchairs” Thesis University of New South Wales. School 

of Mechanical and Manufacturing Engineering  (2006). 



54 
 

3. Seong Pal Kang, Guy Rodnay, Michal Tordon,Jayantha Katupitiya (2003)  

,“A Hand Gesture Based Virtual Interface for Wheelchair Control”  IEEE 

conference  

4. Yi Zhang, Jiao Zhang (2011) “A Novel Intelligent Wheelchair Control 

System Based On Hand Gesture   Recognition” IEEE/ICME conference  

 


