
1

AUTONOMOUS OBJECT TRACKING OF A QUADROTOR

USING COMPUTER VISION

A PROJECT REPORT

Submitted by

S. SRI RAMANA (2010505055)

 B.KOUSHIK (2010505021)

GOWTHAM MAHENDRAN (2010505010)

in partial fulfilment for the award of the degree

of

BACHELOR OF ENGINEERING

in

ELECTRONICS AND INSTRUMENTATION ENGINEERING

DEPARTMENT OF INSTRUMENTATION ENGINEERING

MADRAS INSTITUTE OF TECHNOLOGY

ANNA UNIVERSITY: CHENNAI 600 044

APRIL 2014

2

ANNA UNIVERSITY: CHENNAI 600 044

BONAFIDE CERTIFICATE

Certified that this report titled “AUTONOMOUS OBJECT TRACKING

OF A QUADROTOR” is the bonafide work of SRI

RAMANA.S(2010505055), B.KOUSHIK(2010505021) and GOWTHAM

MAHENDRAN(2010505010) who carried out the project work under my

supervision.

SIGNATURE SIGNATURE

Dr.J.Prakash Dr.D.Manamalli

HEAD OF THE DEPARTMENT GUIDE

Professor, Associate Professor,

Department of Instrumentation Department of Instrumentation

Engineering, Engineering,

Madras Institute of Madras Institute of

Technology, Technology,

Anna University, Anna University,

Chennai -600 044. Chennai -600 044.

3

ACKNOWLEDGEMENT

We here place on record our sincere thanks to our respected Vice

Chancellor, Dr.M.Raja Ram for all his efforts and administration in educating

us in this premier institution. We take the opportunity to express our hearty

thanks to Dr.S.Thamirai Selvi, Dean, Madras Institute of Technology.

 We take privilege to extend our thanks to the Head of the Department of

Instrumentation Engineering, Dr.J.Prakash, who has always been a constant

source of inspiration and encouragement to us during the course.

We are indebted to our internal guide Dr.D.Manamalli, associate

Professor, Department of Instrumentation Engineering for her commendable

support.

We wish to convey our sincere thanks to all the teaching and non-

teaching staffs of the Department of Instrumentation Engineering for their

valuable suggestions and technical support rendered during the course of this

project.

 S.SRI RAMANA

 B.KOUSHIK

 GOWTHAM MAHENDRAN

4

ABSTRACT

The main aim of the project is to realize an object tracking algorithm in

an autonomous Unmanned Aerial Vehicles (UAV) that enables it to track

ground moving object. This object tracking algorithm used in this project is a

particle filter in combination with SURF feature detectors. The particle filter

also known as condensation algorithm is an algorithm based on Bayesian

inference that represent the pdf (Probability Density Function) as a set of

particles and uses a colour histogram as the observation model of the reference

image to be tracked. The SURF (Speeded Up Robust Features) is an improved

version of SIFT(Shift Invariant Feature Transform).It applies mathematical

operation to the reference image and stores the keypoints in the form of vectors.

These keypoints also called features, are very distinct to any image. The SURF

is rotation, scale, and illumination invariant. In our hybrid approach we use both

the above mentioned algorithms. Normally, SURF keeps on tracking the object.

But at times SURF can be detect many false positives. Our program checks if

the object detected by SURF is the object to be tracked, if not then the particle

filter takes over. The processor used here is an advanced digital signal processor

from Blackfin BF561-EZ-kit.

5

LIST OF FIGURES USED IN THIS PROJECT

Fig.No Description Page No

5.1 Bayesian Network of HMM 13

6.1 State Representation of the object 21

6.2 Object tracked by the Particle Filter 26

6.3 Object tracked by SURF feature Detector 27

6.4 Total occulsion of object 27

6.5 Retracking after release of occlusion 28

6

CHAPTERNo TITLE PAGE No.

ABSTRACT IV

LIST OF FIGURES V

1. INTRODUCTION 1

1.1 INTRODUCTION 1

 1.2 AIM AND OBJECTIVE 1

2. CURRENT TRENDS IN UAV OBJECT TRACKING 2

 2.1 FACTORS LEADING TO SEVERAL

 APPROACHES 2

 2.2 ADAPTIVE ALGORITHM 2

 2.3 LAYER SEGMENTATION APPROACH 3

 2.4 KALMAN FILTER BASED APPROACH 3

3. OBJECT TRACKING 4

 3.1 INTRODUCTION 4

 3.2 TYPES OF ALGORITHM USED 5

 3.2.1 TARGET REPRESENTATION AND

 LOCALISATION 6

 3.2.2 FILTERING AND DATA

 ASSOCIATION 6

7

 4. COMPUTER VISION USING OPENCV 7

 4.1 INTRODUCTION 7

 4.2 APPLICATIONS 7

 4.3 OPENCV 8

 4.4 CONTENTS OF MACHINE LEARNING

 LIBRARY 9

 4.5 PROGRAMMING LANGUAGE SUPPORTED

 BY OPENCV 10

 5. PARTICLE FILTER USING BAYESIAN

 INFERENCE 11

5.1 BAYESIAN INFERENCE 11

5.2 RECURSIVE BAYES FILTER 12

 5.2.1 MODE 13

5.3 SEQUENTIAL BAYESIAN FILTER 15

5.4 SEQUENTIAL MONTE CARLO METHODS 15

5.5 SEQUENTIAL IMPORTANCE RESAMPLING 16

 5.5.1 ALGORITHM 16

 5.5.2 PROCEDURE FOR SEQUENTIAL

 RESAMPLING 17

8

 6. ABOUT THE PROJECT WORK 19

 6.1 SURF FEATURE DETECTOR 19

 6.2 MATCHING STRATEGY 19

 6.3 REAL TIME IMPLEMENTATION 20

 6.4 THE CONDENSATION ALGORITHM 21

 6.4.1 THE OBJECT STATE 22

 6.4.2 THE OBSERVATION MODEL 22

 6.4.3 INITIALISING THE POINTS 22

 6.4.4 MEASURMENT UPDATE EQUATION 22

 6.4.5 RE-SAMPLING 23

 6.4.6 STATE UPDATE 23

 6.5 THE ALGORITHM 24

 6.6 IMPLEMENTATION 25

7. CONCLUSION 29

 REFERENCES 30

 APPENDIX 31

 APPENDIX A 31

 APPENDIX B 32

 APPENDIX C 43

9

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

The vision-based control of Unmanned Aerial Vehicles (UAVs) has

become a very active field of research in the last decade. Vision indeed provides

a cheap, passive and rich source of information, and low weight cameras can be

embedded even on small-size flying UAVs. Until now, most of the efforts have

been concentrated on developing vision-based control methods for autonomous

take off, landing, stabilization and navigation, in which the visual information is

usually obtained using a known model of a target or the environment, key

images, or texture points for motion estimation or optical flow computation. To

track arbitrary objects is a key ability for autonomous agents to fulfil many

different tasks like surveillance, guiding or following as well as interacting with

and learning from humans.

1.2 AIM AND OBJECTIVE

The aim of the project is to develop an object tracking algorithm that

involves a combination of SURF feature detector and particle filter algorithm

with the aim of porting the algorithm on-board a quadrotor. Both the algorithm

has distinct desirable characters, by combining both algorithms we get

robustness and the advantages of both the algorithms.

CHAPTER 2

10

RECENT TRENDS IN UAV OBJECT TRACKING

2.1 FACTORS LEADING TO SEVERAL APPROACHES

Many successful and accurate object tracking approaches have been

proposed in recent years. However, many of them are not applicable for the

tasks of mobile robots, because the domain violates several of the underlying

assumptions. There is no static background and no fixed target appearance and

the image quality can be bad due to insufficient illumination or glare. In some

applications one cannot build a complex target model off-line, because the kind

of object to track is not known in advance. Generally, one does not have a set of

calibrated cameras for 3D reconstruction. And finally, the computational power

is very limited because of small form factors and the available energy, but at the

same time quick reactions are needed when interacting with a rapidly changing

environment. There are several algorithms followed for object tracking and are

discussed below.

2.2 ADAPTIVE ALGORITHM

The core of this method is a novel observation model and the way it is

automatically adapted to a changing object and background appearance over

time [2]. The model is integrated into the well known Condensation algorithm

(SIR filter)for statistical inference, and it consists of a boosted ensemble of

simple threshold classifiers built upon center-surround Haar-like features, which

the filter continuously updates based on the images perceived. Optimizations

and reasonable approximations to limit the computational costs were presented.

Thus, the final algorithms are capable of processing video input in real time.

To experimentally investigate the gain of adapting the observation model, two

different approaches with a non-adapting version of observation model were

11

compared: maintaining a single observation model for all particles, and

maintaining individual observation models for each particle. In addition,

experiments were conducted to compare system performances between the

proposed algorithms and two other state of the art Condensation based tracking

approaches.

2.3 LAYER SEGMENTATION APPROACH

In this approach [5], layer segmentation approach with background

stabilization and post track refinement is combined to reliably detect small

moving objects at the relatively low processing speed. A fast tracking algorithm

that has been optimized for real-time application was employed. To classify

vehicle and person from the detected objects, a (Histogram Of Oriented

Gradient) HOG based vehicle vs. person classifier is designed and integrated

with the tracking post processing.

2.4 KALMAN FILTER BASED APPROACH

This approach[3] uses multiple independent object tracking algorithms as

inputs to a single Kalman filter. A function for estimating each algorithm’s error

from related features is trained using linear regression. This error is used as the

algorithm’s measurement variance. With a dynamic measurement error

covariance computed from these estimates, an overall object tracking filter that

combines each algorithm’s best-case behavior was produced while diminishing

worst-case behavior. This filter is intended to be robust without being

programmed with any environment-specific rules.

CHAPTER 3

12

OBJECT TRACKING

3.1 INTRODUCTION

The objective of video tracking is to associate target objects in

consecutive video frames. The association can be especially difficult when the

objects are moving fast relative to the frame rate. Another situation that

increases the complexity of the problem is when the tracked object changes

orientation over time. For these situations video tracking systems usually

employ a motion model which describes how the image of the target might

change for different possible motions of the object.

Examples of simple motion models are:

 When tracking planar objects, the motion model is a 2D transformation

(affine transformation or homography) of an image of the object (e.g. the

initial frame).

 When the target is a rigid 3D object, the motion model defines its aspect

depending on its 3D position and orientation.

 For video compression, key frames are divided into macroblocks. The

motion model is a disruption of a key frame, where each macroblock is

translated by a motion vector given by the motion parameters.

 The image of deformable objects can be covered with a mesh, the motion of

the object is defined by the position of the nodes of the mesh.

3.2 TYPES OF ALGORITHM USED

http://en.wikipedia.org/wiki/Frame_rate
http://en.wikipedia.org/wiki/Affine_transformation
http://en.wikipedia.org/wiki/Homography_(computer_vision)
http://en.wikipedia.org/wiki/Video_compression
http://en.wikipedia.org/wiki/Key_frame
http://en.wikipedia.org/wiki/Macroblock

13

To perform video tracking an algorithm analyzes sequential video

frames and outputs the movement of targets between the frames. There are a

variety of algorithms, each having strengths and weaknesses. Considering the

intended use is important when choosing which algorithm to use. There are two

major components of a visual tracking system: target representation and

localization, as well as filtering and data association.

3.2.1 TARGET REPRESENTATION AND LOCALIZATION

It is mostly a bottom-up process. These methods give a variety of tools for

identifying the moving object. Locating and tracking the target object

successfully is dependent on the algorithm. For example, using blob tracking is

useful for identifying human movement because a person's profile changes

dynamically. Typically the computational complexity for these algorithms is

low. The following are some common target representation and

localization algorithms:

 Blob tracking: segmentation of object interior (for example blob detection,

block-based correlation or optical flow)

 Kernel-based tracking (mean-shift tracking): an iterative localization

procedure based on the maximization of a similarity measure (Bhattacharyya

coefficient).

 Contour tracking: detection of object boundary (e.g. active contours

or Condensation algorithm)

 Visual feature matching: registration

3.2.2 FILTERING AND DATA ASSOCIATION:

http://en.wikipedia.org/wiki/Video_frame
http://en.wikipedia.org/wiki/Video_frame
http://en.wikipedia.org/wiki/Blob_detection
http://en.wikipedia.org/wiki/Optical_flow
http://en.wikipedia.org/wiki/Mean-shift
http://en.wikipedia.org/wiki/Bhattacharyya_coefficient
http://en.wikipedia.org/wiki/Bhattacharyya_coefficient
http://en.wikipedia.org/wiki/Condensation_algorithm
http://en.wikipedia.org/wiki/Image_registration

14

It is mostly a top-down process, which involves incorporating prior

information about the scene or object, dealing with object dynamics, and

evaluation of different hypotheses. These methods allow the tracking of

complex objects along with more complex object interaction like tracking

objects moving behind obstructions. Additionally the complexity is increased if

the video tracker (also named TV tracker or target tracker) is not mounted on

rigid foundation (on-shore) but on a moving ship (off-shore), where typically an

inertial measurement system is used to pre-stabilize the video tracker to reduce

the required dynamics and bandwidth of the camera system. The computational

complexity for these algorithms is usually much higher. The following are some

common filtering algorithms:

 Kalman filter: an optimal recursive Bayesian filter for linear functions

subjected to Gaussian noise.

 Particle filter: useful for sampling the underlying state-space distribution of

nonlinear and non-Gaussian processes.

CHAPTER 4

http://en.wikipedia.org/wiki/Kalman_filter
http://en.wikipedia.org/wiki/Particle_filter

15

COMPUTER VISION USING OPEN CV

4.1 INTRODUCTION

Computer vision is a field that includes methods for

acquiring, processing, analyzing, and understanding images and, in general,

high-dimensional data from the real world in order to produce numerical or

symbolic information, e.g., in the forms of decisions. A theme in the

development of this field has been to duplicate the abilities of human vision by

electronically perceiving and understanding an image. This image

understanding can be seen as the disentangling of symbolic information from

image data using models constructed with the aid of geometry, physics,

statistics, and learning theory. Computer vision has also been described as the

enterprise of automating and integrating a wide range of processes and

representations for vision perception.

4.2 APPLICATIONS

Applications range from tasks such as industrial machine vision systems

which, say, inspect bottles speeding by on a production line, to research into

artificial intelligence and computers or robots that can comprehend the world

around them. The computer vision and machine vision fields have significant

overlap. Computer vision covers the core technology of automated image

analysis which is used in many fields. Machine vision usually refers to a process

of combining automated image analysis with other methods and technologies to

provide automated inspection and robot guidance in industrial applications.

As a scientific discipline, computer vision is concerned with the theory behind

artificial systems that extract information from images. The image data can take

many forms, such as video sequences, views from multiple cameras, or multi-

dimensional data from a medical scanner.

http://en.wikipedia.org/wiki/Digital_image_processing
http://en.wikipedia.org/wiki/Machine_vision

16

As a technological discipline, computer vision seeks to apply its theories and

models to the construction of computer vision systems. Examples of

applications of computer vision include systems for:

 Controlling processes, e.g., an industrial robot;

 Navigation, e.g., by an autonomous vehicle or mobile robot;

 Detecting events, e.g., for visual surveillance or people counting;

 Organizing information, e.g., for indexing databases of images and image

sequences;

 Modelling objects or environments, e.g., medical image analysis or

topographical modelling.

 Interaction, e.g., as the input to a device for computer-human interaction,

and

 Automatic inspection, e.g., in manufacturing applications.

Sub-domains of computer vision include scene reconstruction, event

detection, video tracking, object recognition, learning, indexing, motion

estimation, and image restoration.

In most practical computer vision applications, the computers are pre-

programmed to solve a particular task, but methods based on learning are now

becoming increasingly common.

4.3 OPENCV

OpenCV (Open Source Computer Vision) is a library of programming

functions mainly aimed at real-time computer vision, developed by Intel, and

now supported by Willow Garage and Itseez. It is free for use under the open

source BSD license. The library is cross-platform. It focuses mainly on real-

time image processing. If the library finds Intel's Integrated Performance

http://en.wikipedia.org/wiki/Industrial_robots
http://en.wikipedia.org/wiki/Autonomous_vehicle
http://en.wikipedia.org/wiki/People_counter
http://en.wikipedia.org/wiki/Computer-human_interaction
http://en.wikipedia.org/wiki/Video_tracking
http://en.wikipedia.org/wiki/Object_recognition
http://en.wikipedia.org/wiki/Motion_estimation
http://en.wikipedia.org/wiki/Motion_estimation
http://en.wikipedia.org/wiki/Image_restoration
http://en.wikipedia.org/wiki/Library_(computing)
http://en.wikipedia.org/wiki/Library_(computing)
http://en.wikipedia.org/wiki/Computer_vision
http://en.wikipedia.org/wiki/Intel_Corporation
http://en.wikipedia.org/wiki/Willow_Garage
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/BSD_license
http://en.wikipedia.org/wiki/Cross-platform
http://en.wikipedia.org/wiki/Integrated_Performance_Primitives

17

Primitives on the system, it will use these proprietary optimized routines to

accelerate it.

OpenCV's application areas include:

 2D and 3D feature toolkits

 Ego motion estimation

 Facial recognition system

 Gesture recognition

 Human–computer interaction (HCI)

 Mobile robotics

 Motion understanding

 Object identification

 Segmentation and Recognition

 Stereo sis Stereo vision: depth perception from 2 cameras

 Structure from motion (SFM)

 Motion tracking

 Augmented reality

4.4 CONTENTS OF MACHINE LEARNING LIBRARY

To support some of the above areas, OpenCV includes a statistical machine

learning library that contains:

 Boosting (meta-algorithm)

 Decision tree learning

 Gradient boosting trees

 Expectation-maximization algorithm

 k-nearest neighbour algorithm

 Naive Bayes classifier

http://en.wikipedia.org/wiki/Integrated_Performance_Primitives
http://en.wikipedia.org/wiki/Egomotion
http://en.wikipedia.org/wiki/Facial_recognition_system
http://en.wikipedia.org/wiki/Gesture_recognition
http://en.wikipedia.org/wiki/Human%E2%80%93computer_interaction
http://en.wikipedia.org/wiki/Mobile_robotics
http://en.wikipedia.org/w/index.php?title=Motion_understanding&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Object_identification&action=edit&redlink=1
http://en.wikipedia.org/wiki/Segmentation_(image_processing)
http://en.wikipedia.org/wiki/Stereopsis
http://en.wikipedia.org/wiki/Structure_from_motion
http://en.wikipedia.org/wiki/Video_tracking
http://en.wikipedia.org/wiki/Augmented_reality
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Boosting_(meta-algorithm)
http://en.wikipedia.org/wiki/Decision_tree_learning
http://en.wikipedia.org/wiki/Gradient_boosting
http://en.wikipedia.org/wiki/Expectation-maximization_algorithm
http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
http://en.wikipedia.org/wiki/Naive_Bayes_classifier

18

 Artificial neural networks

 Random forest

 Support vector machine (SVM)

4.5 PROGRAMMING LANGUAGE USED IN OPENCV

OpenCV is written in C++ and its primary interface is in C++, but it still

retains a less comprehensive though extensive older C interface. There are now

full interfaces in Python, Java and MATLAB/OCTAVE (as of version 2.5). The

API for these interfaces can be found in the online documentation. Wrappers in

other languages such as C#, Ch, Ruby have been developed to encourage

adoption by a wider audience.

All of the new developments and algorithms in OpenCV are now developed in

the C++ interface.

CHAPTER 5

PARTICLE FILTER USING BAYESIAN INFERENCE

http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Random_forest
http://en.wikipedia.org/wiki/Support_vector_machine
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/MATLAB
http://en.wikipedia.org/wiki/GNU_Octave
http://en.wikipedia.org/wiki/C_Sharp_(programming_language)
http://en.wikipedia.org/wiki/Ch_(computer_programming)
http://en.wikipedia.org/wiki/Ruby_(programming_language)

19

5.1 BAYESIAN INFERENCE

Bayesian inference derives the posterior probability as a consequence of

two antecedents, a prior probability and a "likelihood function" derived from a

probability model for the data to be observed. Bayesian inference computes the

posterior probability according to Bayes' rule:

Where

 denotes a conditional probability; more specifically, it means given.

 stands for any hypothesis whose probability may be affected

by data (called evidence below). Often there are competing hypotheses,

from which one chooses the most probable.

 The evidence corresponds to new data that were not used in computing

the prior probability.

 , the prior probability, is the probability of before is

observed. This indicates one's previous estimate of the probability that a

hypothesis is true, before gaining the current evidence.

 , the posterior probability, is the probability of given ,

i.e., after is observed. This tells us what we want to know: the

probability of a hypothesis given the observed evidence.

 is the probability of observing given . As a function

of E with H fixed, this is the likelihood. The likelihood function

should not be confused with P(H | E) as a function of H rather than of E.

It indicates the compatibility of the evidence with the given hypothesis.

 is sometimes termed the marginal likelihood or "model evidence".

This factor is the same for all possible hypotheses being considered.

http://en.wikipedia.org/wiki/Posterior_probability
http://en.wikipedia.org/wiki/Consequence_relation
http://en.wikipedia.org/wiki/Antecedent_(logic)
http://en.wikipedia.org/wiki/Prior_probability
http://en.wikipedia.org/wiki/Likelihood_function
http://en.wikipedia.org/wiki/Bayes%27_rule
http://en.wikipedia.org/wiki/Conditional_probability
http://en.wikipedia.org/wiki/Experimental_data
http://en.wikipedia.org/wiki/Prior_probability
http://en.wikipedia.org/wiki/Posterior_probability
http://en.wikipedia.org/wiki/Likelihood_function
http://en.wikipedia.org/wiki/Marginal_likelihood

20

(This can be seen by the fact that the hypothesis does not appear

anywhere in the symbol, unlike for all the other factors.) This means that

this factor does not enter into determining the relative probabilities of

different hypotheses.

Note that, for different values of , only the factors and

 affect the value of . As both of these factors appear in the

numerator, the posterior probability is proportional to both. In words:

 (more exactly) The posterior probability of a hypothesis is determined by

a combination of the inherent likeliness of a hypothesis (the prior) and

the compatibility of the observed evidence with the hypothesis (the

likelihood).

 (more concisely) Posterior is proportional to likelihood times prior.

Note that Bayes' rule can also be written as follows:

where the factor represents the impact of on the probability

of .

5.2 RECURSIVE BAYES FILTER:

A Bayes filter is an algorithm used in computer science for calculating the

probabilities of multiple beliefs to allow a robot to infer its position and

orientation. Essentially, Bayes filters allow robots to continuously update their

most likely position within a coordinate system, based on the most recently

acquired sensor data. This is a recursive algorithm. It consists of two parts:

prediction and innovation. If the variables are linear and normally

distributed the Bayes filter becomes equal to the Kalman filter.

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Robot
http://en.wikipedia.org/wiki/Normal_Distribution
http://en.wikipedia.org/wiki/Normal_Distribution
http://en.wikipedia.org/wiki/Kalman_filter

21

In a simple example, a robot moving throughout a grid may have several

different sensors that provide it with information about its surroundings. The

robot may start out with certainty that it is at position (0,0). However, as it

moves farther and farther from its original position, the robot has continuously

less certainty about its position; using a Bayes filter, a probability can be

assigned to the robot's belief about its current position, and that probability can

be continuously updated from additional sensor information.

5.2.1 MODE

The true state is assumed to be an unobserved Markov process, and the

measurements are the observed states of a Hidden Markov Model (HMM).

Fig 5.1: Bayesian Network of HMM

Because of the Markov assumption, the probability of the current true

state given the immediately previous one is conditionally independent of the

other earlier states.

Similarly, the measurement at the k-th timestep is dependent only upon

the current state, so is conditionally independent of all other states given the

current state.

http://en.wikipedia.org/wiki/Markov_process
http://en.wikipedia.org/wiki/Hidden_Markov_Model
http://en.wikipedia.org/wiki/File:HMM_Kalman_Filter_Derivation.svg

22

Using these assumptions the probability distribution over all states of the HMM

can be written simply as:

However, when using the Kalman filter to estimate the state x, the

probability distribution of interest is associated with the current states

conditioned on the measurements up to the current timestep. (This is achieved

by marginalising out the previous states and dividing by the probability of the

measurement set.)

This leads to the predict and update steps of the Kalman filter written

probabilistically. The probability distribution associated with the predicted state

is the sum (integral) of the products of the probability distribution associated

with the transition from the (k - 1)-th timestep to the k-th and the probability

distribution associated with the previous state, over all possible .

The probability distribution of update is proportional to the product of the

measurement likelihood and the predicted state.

The denominator

is constant relative to , so we can always substitute it for a coefficient ,

which can usually be ignored in practice. The numerator can be calculated and

then simply normalized, since its integral must be unitary.

5.3 SEQUENTIAL BAYESIAN FILTERING:

23

Sequential Bayesian filtering is the extension of the Bayesian estimation

for the case when the observed value changes in time. It is a method to estimate

the real value of an observed variable that evolves in time.

The method is named:

Filtering, when we estimate the current value given past and current

observations,

Smoothing, when estimating past values given present and past measures, and

Prediction, when estimating a probable future value given the present and the

past measures.

The notion of Sequential Bayesian filtering is extensively used

in control and robotics.

5.4 SEQUENTIAL MONTE CARLO METHODS

Particle filters or Sequential Monte Carlo (SMC) methods are a set of

on-line posterior density estimation algorithms that estimate the posterior

density of the state-space by directly implementing the Bayesian

recursion equations. SMC methods use a grid-based approach, and use a set of

particles to represent the posterior density. These filtering methods make no

restrictive assumption about the dynamics of the state-space or the density

function. SMC methods provide a well-established methodology for generating

samples from the required distribution without requiring assumptions about the

state-space model or the state distributions. The state-space model can be non-

linear and the initial state and noise distributions can take any form required.

However, these methods do not perform well when applied to high-dimensional

systems. SMC methods implement the Bayesian recursion equations directly by

using an ensemble based approach. The samples from the distribution are

represented by a set of particles; each particle has a weight assigned to it that

http://en.wikipedia.org/wiki/Smoothing
http://en.wikipedia.org/wiki/Control_theory
http://en.wikipedia.org/wiki/Robotics
http://en.wikipedia.org/wiki/Density_estimation
http://en.wikipedia.org/wiki/Recursive_Bayesian_estimation
http://en.wikipedia.org/wiki/Recursive_Bayesian_estimation

24

represents the probability of that particle being sampled from the probability

density function.

Weight disparity leading to weight collapse is a common issue

encountered in these filtering algorithms; however it can be mitigated by

including a re-sampling step before the weights become too uneven. In the re-

sampling step, the particles with negligible weights are replaced by new

particles in the proximity of the particles with higher weights.

5.5 SEQUENTIAL IMPORTANCE RESAMPLING (SIR)

5.5.1 ALGORITHM

Sequential importance re-sampling (SIR), the original particle filtering

algorithm (Gordon et al. 1993), is a very commonly used particle filtering

algorithm, which approximates the filtering distribution by a

weighted set of P particles

The importance weights are approximations to the relative posterior

probabilities (or densities) of the particles such that

.

SIR is a sequential (i.e., recursive) version of importance sampling. As in

importance sampling, the expectation of a function can be approximated as

a weighted average

http://en.wikipedia.org/wiki/Resampling_(statistics)
http://en.wikipedia.org/wiki/Importance_sampling

25

For a finite set of particles, the algorithm performance is dependent on the

choice of the proposal distribution

.

The optimal proposal distribution is given as the target distribution

However, the transition prior probability distribution is often used as

importance function, since it is easier to draw particles (or samples) and

perform subsequent importance weight calculations:

Sequential Importance Re-sampling (SIR) filters with transition prior

probability distribution as importance function are commonly known

as bootstrap filter and condensation algorithm.

Re-sampling is used to avoid the problem of degeneracy of the algorithm,

that is, avoiding the situation that all but one of the importance weights are

close to zero. The performance of the algorithm can be also affected by proper

choice of re-sampling method. The stratified sampling proposed by Kitagawa

(1996) is optimal in terms of variance.

5.5.2 PROCEDURE FOR SEQUENTIAL RESAMPLING

The steps involved in sequential re-sampling are as follows:

1) For draw samples from the proposal distribution

2) For update the importance weights up to a normalizing

constant:

http://en.wikipedia.org/wiki/Resampling_(statistics)#Bootstrap
http://en.wikipedia.org/wiki/Condensation_algorithm
http://en.wikipedia.org/wiki/Stratified_sampling

26

Note that when we use the transition prior probability distribution as the

importance function, , this simplifies to the

following :

3) For compute the normalized importance weights:

4) Compute an estimate of the effective number of particles as

5) If the effective number of particles is less than a given

threshold , then perform resampling:

a) Draw particles from the current particle set with probabilities proportional

to their weights. Replace the current particle set with this new one.

b) For set

The term Sampling Importance Resampling is also sometimes used when

referring to SIR filters.

27

CHAPTER 6

ABOUT THE PROJECT WORK

The project involves implementation of an object tracking algorithm in a

quad rotor with an on-board camera. The algorithm used in this project is a

combination of SURF (Speeded Up Robust Features) feature detectors and

Condensation algorithm also called a Particle Filter.

6.1 SURF FEATURE DETECTOR

This is a method for object detection that is scale and rotation invariant,

robust, fast and most importantly, can work with a single training image!

Speeded-Up Robust Features, SURF in short.

A short description of what SURF does is:

 Find interest points in the image using Hessian matrices

 Determine the orientation of these points

 Use basic Haar wavelets in a suitably oriented square region

around the interest points to find intensity gradients in the X and Y

directions. As the square region is divided into 16 squares for this,

and each such sub-square yields 4 features, the SURF descriptor

for every interest point is 64 dimensional.

 The 4 features are sums of gradient changes.

6.2 MATCHING STRATEGY

A 64 dimensional descriptor for every key point is useless without a

method of deciding whether a query descriptor matches a training descriptor or

not. For matching, we use the K nearest neighbour search. A KNN search

basically computes the 'distance' between a query descriptor and all of the

28

training descriptors, and returns the K pairs with lowest distance. Here we will

keep K=2.

Hence we now have 2 pairs of matches for each query descriptor. So

basically the KNN search gave us 2 matches to every query descriptor. What is

important is how we decide which of all these matches ‘good matches’ are after

all. The strategy we employ is (each match has a 'distance' associated with it) .

For every query descriptor,

If distance(match1) < 0.8 * distance (match2), match1 is a good match

otherwise discard both match1 and match2 as false matches.

6.3 REAL-TIME IMPLEMENTATION

 Take an image of the object you want to detect and extract SURF

descriptors for it. It is important for this image to contain only the

object and to be free from any harsh lighting.

 Now do the same for every frame coming from your camera.

 Employ the matching strategy to match descriptors from every

frame with the descriptors of the object and find out the 'good

matches'.

 Create a window with the object image on one side and the video

playing on the other side. Draw good matches between the two.

 To get a bounding box around a detected object, using the good

matches, find a homography that transforms points from the object

image to the video frame. Using this homography , transform the 4

corners of the object image. Consider these 4 transformed points as

vertices and draw a box in the video frame.

29

6.4 THE CONDENSATION ALGORITHM

6.4.1 THE OBJECT STATE

We have employed a first order motion model in order to predict the future

target position in the next few frames of the sequence and avoid the exhaustive

search over the entire frame. The state vector has therefore been defined so as to

include the position and size of the rectangular bounding box of the target

object in the image plane, as well as its velocity and changes in size. In

particular, the state space for our tracker is defined over vectors of the form as

shown in Fig 6.1:

Xk = (x, y, w, h, x’, y’, w’, h’)

Fig 6.1: State space representation of the tracker

Here as defined in the picture the (x,y) represents the position of the

object in the image frame with a bounding box of width w and height h. These

form the first four term of the equation and the other four terms form the

x

w

h

y

(x,y)

30

derivative for the four terms i.e.) x’, y’, w’, h’ denote the rate of change of x, y,

w, h respectively.

6.4.2 THE OBSERVATION MODEL

 The observation model used in this project is the colour histogram of the

reference object to be tracked. The histogram of the bounding box of

dimensions w and h centred on (x,y) is considered.

6.4.3 INITIALISING THE POINTS

 Let initially the target position is known, N points are taken around it

with Gaussian distribution. All of these points have equal weights assigned to

each other so that the total sums up to one hence weights are initialised to 1/N.

6.4.4 MEASUREMENTS UPDATE EQUATION

Now for each and every point compute the histogram and calculate its

distance from the reference histogram. Let q
*
 = {qu*}u=1,2,…m. denote the

reference histogram, determined in the tracking initialisation step. Then, the

tracking process aims to find in each frame k, the candidate state

Xk which histogram q(xk) is the “closest” to the reference histogram q
*
. To

achieve this, a correlation criterion in the histogram space is provided by

Bhattacharyya coefficient:

ϱ(xk) = ϱ(q*; q(xk)) =Σ√(qu
*
qu)

A candidate state xk for the object in frame k is then compared to the reference

object using the Bhattacharyya distance:

d(xk) = d(q
*
, q(xk)) =√(1-ϱ(xk))

The likelihood function is derived from the distance defined in equation. The

spatial information is yielded by computing n
th

 histograms in the n
th

 parts as in.

31

Formally, the likelihood of a state xk is then defined by:

p(zk | xk) α exp(-λdm
2
(xk))

where λ is a constant parameter tuned empirically (a typical value is λ = 20).For

initialisation, the particles are sampled on a Gaussian distribution around the

initial known position. The weights are assigned the value of the likelihood and

then normalised such that the sum of all the weights of the particles add up to 1.

6.4.5 RE-SAMPLING

The N particle states are resampled with replacement and the probability

of a particle getting resampled is directly proportional to the weight of the

particle. Hence, this way particles with higher weights are sampled for next

generation while particles with lesser weights get discarded. Each particle is

again assigned a weight of 1/N.

6.4.6 STATE UPDATE

The velocity is incremented depending on the distance of current centre

of mass of the particles. The increment of velocity is directly proportional to the

distance of the centre of mass. As a consequence if the center of mass is more

similar to the reference image then the particles are propagated only to a certain

amount else they are propagated far out. The position vector is updated by

adding the current velocity vectors.

32

Then the cycle of measurement update, re-sampling is repeated at any

instant the centre of mass of the particles gives the current position of the

object.

6.5 THE ALGORITHM

1. In our project the algorithm is a combination of the above mentioned

algorithm.

2. Initially the colour histogram in HSV colour space of the object is stored

and the SURF features for the reference object are stored.

3. Then once the video frames starts pouring in the SURF, detects the object

and draws a bounding box around the object.

4. First we detect whether the bounding rectangle is of correct size and

whether it is a rectangle and calculate the colour histogram of the center

of the bounding box.

5. If all of the above conditions hold then the all the particles of particle

filter is given the centre of the bounding box and all its weights are

initialised to one.

6. If any of the above condition fails then the particle filter automatically

takes over and starts tracking the object using the algorithm mentioned

above.

7. Once the SURF starts producing correct transformations we resume

tracking using SURF.

33

6.6 IMPLEMENTATION AND RESULTS

In this project the on-board processor is an ADSP BF561-EZ KIT board.

The camera is attached to the board and the board runs on a visual DSP kernel.

We use visual DSP IDE for programming and we use openCV library for the

computer vision primitives.

The ADSP bf561 is a dual core processor with cores named as core A and

core B. It is interfaced with the input video device and an output video device

using a video decoder and an encoder through the PPI (Parallel Peripheral

Interface) 0 and 1.

Our algorithm is situated in core A as it gets the input from the PPI0

processes the frame and gives it back via the output frame.

The Fig 6.2 shows a ball being tracked by the particle filter. As it can be

seen, the blue particles are the particles evolved from the previous generation of

re sampled particles, using the given dynamic model and, after performing

measurement update , the particles are weighed based on the observation model,

Only the green particles that have a higher weight are chosen with higher

probability in the re-sampling step. This clearly illustrates random weighted

sampling. The location of image at any instant is the weighted mean of the

particles and by finding the mean we get the center of the image. A bounding

box is drawn around the object using the center of mass.

34

Fig 6.2: Object tracked by the Particle Filter

 The Fig 6.3 illustrates the SURF feature detection algorithm. The

SURF automatically draws a bounding box around the detected object from the

detected features that are indicated by blue circles.

In Fig 6.4 partial or total occlusion to the target object occurs and when

the occlusion is released in Fig 6.5 the particle filter resumes tracking the

object. It can be seen that although the blue dot is dense around the lower

portion of the image and sparse in the object location the particle filter

accurately samples the particle near the object that has more weight indicated by

the green dot.

35

Fig 6.3: Object being tracked by SURF feature descriptor

Fig 6.4 : Total occlusion of the object

36

Fig 6.5: Retracking of the object by the Particle Filter

The openCV implementation of the program can be found in the

appendix. The first program ‘testapp.h’ is the header file for our program that

declares the various variables and functions necessary for our implementation.

The second program ‘testapp.c’ is the main source code for our implementation.

It contains the definition of our functions declared in ‘testapp.h’. The main.cpp

is the main function of the core A processor in which the ‘processvideo()’

function contains the call to our algorithm.

37

CHAPTER 7

CONCLUSION

7.1 OUTCOME OF THE PROJECT

An object tracking algorithm using a combined approach of SURF and

particle filter is completed. This algorithm is scale, rotation, illumination

invariant, robust against occlusion. The algorithm is realized in the blackfin

ADSP bf561 EZ KIT and successfully installed in UAV.

7.2 FUTURE SCOPE

 The particle filter can further be enhanced by having an adaptive

observation model.

 We can combine a learning algorithms such as Self Organising

Maps(SOMs) to learn every particular feature of the target image

and hence leading to robust tracking.

 Another approach is to create an ensemble of classifiers by

combining all the approaches mentioned so far and build a very

robust tracker.

[Note: we must always bear in mind the computational complexity

involved in any algorithm and based on the situation we should

tweak the algorithm to get the desired performance.]

38

REFERENCES

1. Afef Salhi and Ameni Yengui Ammoussi, ‘Object tracking

system using Camshift , Meanshift and Kalman filter ’, World

Academy of Science, Engineering and Technology 64 2012

2. C´eline Teuli`ere, Laurent Eck, Eric Marchand, ‘Chasing a

moving target from a flying UAV’,(IROS), IEEE/RSJ – 2011

3. Dominik A. Klein, Dirk Schulz, Simone Frintrop, and Armin ,

‘Adaptive Real-Time Video-Tracking for Arbitrary

Objects’(IROS),IEEE/RSJ – 2010

4. Gavin Coelho B.S, ‘An Object tracking autonomous quadrotor for

real-time recognition’, UNIVERSITY OF NORTH TEXAS, May

2012.

.

5. Jiangjian Xiao, Chang jiang Yang, Feng Han, and Hui Cheng,

‘Vehicle and Person Tracking in UAV Videos’, Classification of

Events, Activities, and Relationships Evaluation and Workshop,

Baltimore, 2007.

6. Alberto Del Bimbo, Fabrizio Dini, ‘Particle filter–based visual

tracking with a first order dynamic model and uncertainty

adaptation’.

39

APPENDIX

APPENDIX A

PROGRAM

Testapp.h

#pragma once

#include "opencv.hpp"

#include "surf-algo\surflib.h"

#define in 50

#define N 50

static IplImage *img,*pix2,*pix3;

static IpVec refpts,hipts[in];

static IpVec pts,ppts;static IpPairVec match;

static int refkey[10][2];

static int h,w,t,tg;

static double hist1[256 * 3],hist2[256 * 3],refhist[256*3], obj[8], updt[N][9];

static unsigned char *pix1;

float compkey(int refkey[][2],unsigned int numrefkey,int key[][2],unsigned int

numkey);

void init(unsigned char *img,double *refhist,IpVec *refpts,double updt[][9],int

w,int h);

float comphist(double *hist1,double *hist2);

void crhist(unsigned char *img,double *hist,int w,int h,double obj[4]);

void resample(unsigned char *img,double updt[][9],double *pconf,int w,int

h,int t);

void evolve(unsigned char *,double updt[][9],double *refhist,int,int);

void msrmtupdate(unsigned char *img,double updt[][9], IpVec *refpts,double

*refhist,int w,int h);

void exobj(double updt[][9],double *obj);

void rep(IplImage *img,double obj[4],int w,int h);

bool isrect(CvPoint p[]);

40

APPENDIX B

Testapp.c

#include "testApp.h"

float compkey(int refkey[][2],unsigned int numrefkey,int key[][2],unsigned int

numkey);

void init(unsigned char *img,double *refhist,IpVec *refpts,double updt[][9],int

w,int h);

float comphist(double *hist1,double *hist2);

void crhist(unsigned char *img,double *hist,int w,int h,double obj[4]);

void resample(unsigned char *img,double updt[][9],double *pconf,int w,int

h,int t);

void evolve(unsigned char *,double updt[][9],double *refhist,int,int);

void msrmtupdate(unsigned char *img,double updt[][9], IpVec *refpts,double

*refhist,int w,int h);

void exobj(double updt[][9],double *obj);

void rep(IplImage *img,double obj[4],int w,int h);

bool isrect(CvPoint p[]);

float err(float x)

{

 float t= 1/(1+.5 *abs(x));

 float tu=t*exp(-x*x-1.26551+1.000023*t+.37409*t*t*t-.186288 *

pow(t,4)+.27886*pow(t,5)-1.135203*pow(t,6));

 if(x)

 return (1-tu);

 else

 return(tu-1);

}

void evolve(unsigned char *img,double updt[][9],double *refhist,int w,int h)

41

{

 double obj[8],hist[257*10],dist;

 exobj(updt,obj);

 IplImage *im,*im2;

 im2=cvCreateImage(cvSize(w,h), IPL_DEPTH_8U, 3);

 memcpy(im2->imageData,img,im2->imageSize);

 im=cvCloneImage(im2);

 cvCvtColor(im2,im, CV_RGB2HSV);

 crhist((unsigned char *)im->imageData,hist,w,h,obj);

 dist=(comphist(refhist,hist));

 for(int i=0;i<N;i++)

 {

 updt[i][4]+=(rand()%((int)(60*dist))-(int)(30*dist));

 updt[i][5]+=(rand()%((int)(60*dist))-(int)(30*dist));

 updt[i][6]+=(rand()%((int)(60*dist))-(int)(30*dist));

 updt[i][0]+=updt[i][4];

 updt[i][1]+=updt[i][5];

 updt[i][2]+=updt[i][6];

 updt[i][3]=(updt[i][2]*60)/80;

 if((updt[i][0]<0 || updt[i][0]>320))

 {

 updt[i][0]=w/2;updt[i][4]=0;

 }

 if((updt[i][1]<0 || updt[i][1]>240))

 { updt[i][1]=h/2;updt[i][5]=0;

 }

 if((updt[i][2]<=40 || updt[i][3]<=40))

 {

 /*updt[i][2]=80;

 updt[i][3]=60;

 updt[i][6]=updt[i][7]=0;*/

 }

 }

}

42

bool isrect(CvPoint p[])

{

if(abs(sqrt(pow((float)p[0].x-p[2].x,2)+pow((float)p[0].y-p[2].y,2)) -

sqrt(pow((float)p[1].x-p[3].x,2)+pow((float)p[1].y-p[3].y,2)))<9)

 return 1;

else

 return 0;

}

void msrmtupdate(unsigned char *img,double updt[][9],IpVec *refpts,double

*refhist,int w,int h)

{

 long double tot=0,dist2=0;

 double hist[257 * 10]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

 static double ptr[4],p;

 int key[10][2];

 IpVec pts,tpts;

 IplImage *cl,*tmp2;

 cl=cvCreateImage(cvSize(w,h),IPL_DEPTH_8U,3);

 memcpy(cl->imageData,(img),cl->imageSize);

tmp2=cvCloneImage(cl);

 surfDetDes(cl,tpts ,false, 5, 4, 2, 0.00004f);

 IpPairVec matches;

 IpVec ipts, ref_ipts;

 CvPoint src_corners[4] = {cvPoint(0,0), cvPoint(80,0), cvPoint(80, 60),

cvPoint(0, 60)};

 CvPoint dst_corners[4];

 getMatches(tpts,*refpts,matches);

 int tt=0;

 tt=translateCorners(matches, src_corners, dst_corners);

 if (translateCorners(matches, src_corners, dst_corners))

 {

 // Draw box around object

 for(int i = 0; i < 4; i++)

43

 {

 CvPoint r1 = dst_corners[i%4];

 CvPoint r2 = dst_corners[(i+1)%4];

 cvLine(cl, cvPoint(r1.x, r1.y), cvPoint(r2.x, r2.y), cvScalar(255,255,255),

3);

 }

 for (unsigned int i = 0; i < matches.size(); ++i)

 drawIpoint(cl, matches[i].first);

 }

 CvPoint cpt;

 cpt.x=((dst_corners[0].x)+(dst_corners[2].x))/2;

 cpt.y=((dst_corners[0].y)+(dst_corners[2].y))/2;

 p++;

 if(tt)

 {

if((abs(ptr[2]-abs(dst_corners[0].x-dst_corners[1].x))>=30 ||

abs(ptr[3]-abs(dst_corners[0].y-dst_corners[3].y))>=30 ||

!isrect(dst_corners)) && p>3)

 {

 tt=0;

 }

 else

 {

 cvCvtColor(tmp2,cl ,CV_RGB2HSV);

ptr[0]=cpt.x;ptr[1]=cpt.y;ptr[2]=abs(dst_corners[0].x-

st_corners[1].x);ptr[3]=abs(dst_corners[0].y-dst_corners[3].y);

 crhist((unsigned char *)cl->imageData,hist,w,h,ptr);

 dist2=.1*(double)exp(-2*pow(comphist(hist,refhist),2));

 }

 }

 for(int i=0;i<N;i++)

 {

 if(tt && dist2>.05)

44

 {

updt[i][0]=cpt.x;

updt[i][1]=cpt.y;

updt[i][2]=ptr[2];

updt[i][3]=ptr[3];

updt[i][4]=1;

updt[i][5]=1;

updt[i][8]=1;

tot++;

 }

 else

 {

 double pt[4];

 for(int k=0;k<4;k++)

 {

 pt[k]=updt[i][k];

 }

 cvCvtColor(tmp2,cl, CV_RGB2HSV);

 crhist((unsigned char *)cl->imageData,hist,w,h,pt);

 dist2=.1*(double)exp(-100*pow(comphist(hist,refhist),2));

 updt[i][8]=dist2;

 tot+=updt[i][8];

 }

 }

 for(int i=0;i<N;i++)

 {

 updt[i][8]/=(double)tot;

 }

}

void exobj(double updt[][9],double *obj)

{

for(int i=0;i<8;i++)

45

{

 obj[i]=0;

for(int j=0;j<N;j++)

{

 obj[i]+=(double)updt[j][8]*updt[j][i];

}

}

}

void init(unsigned char *img,double *refhist,IpVec *refpts,double updt[][9],int

w,int h)

{

 double obj[8]={0};

 unsigned char pix[60*80*3]={0,0};

 obj[0]=w/2;obj[1]=h/2;obj[2]=80;obj[3]=60;obj[4]=obj[5]=1;obj[6]=obj[

7]=0;

 int x=obj[0],y=obj[1],wt=obj[2],ht=obj[3];

 int p=0,l=0;

 IpVec pt;

 IplImage *im;

 im=cvCreateImage(cvSize(w,h),IPL_DEPTH_8U,3);

 memcpy(im->imageData,img,im->imageSize);

 surfDetDes(im,pt,false,5,4,2,0.00004f);

 p=0;

 for(int k=0;k<pt.size();k++)

 {

 if((pt.at(k).x>=(w/2-wt/2)) && (pt.at(k).x<=(w/2+wt/2)) &&

(pt.at(k).y>=(h/2-ht/2)) && (pt.at(k).y<=(h/2+ht/2)))

 {

 Ipoint tmp;

 pt.at(k).x-=(w/2-wt/2);

46

 pt.at(k).y-=(h/2-ht/2);

 (*refpts).push_back(pt.at(k));

 }

 }

 for(int i=0;i<N;i++)

 {

 updt[i][0]=obj[0]+(rand()%60-30);

 updt[i][1]=obj[1]+(rand()%60-30);

 updt[i][2]=obj[2];

 updt[i][3]=obj[3];

 updt[i][4]=obj[4];

 updt[i][5]=obj[5];

 updt[i][6]=obj[6];

 updt[i][7]=obj[7];

 updt[i][8]=(double)1/N;

 img[3*(int)(w*updt[i][1]+updt[i][0])]=0;img[3*(int)(w*updt[i][1]+updt[i

][0])+1]=255;img[3*(int)(w*updt[i][1]+updt[i][0])+1]=0;

 }

}

void resample(unsigned char *img,double updt[][9],double *pconf,int w,int

h,int t)

{

 long double obj[8]={0},tot=0;

 double temp[N][10];

 temp[0][9]=0;

 for(int i=0;i<N;i++)

 {

 for(int j=0;j<9;j++)

 {

 temp[i][j]=updt[i][j];

 }

 if (i>0)

47

 temp[i][9]=temp[i-1][9]+updt[i][8];

 tot+=updt[i][8];

 }

 for(int i=0;i<N;i++)

 {

 double tmp=rand()%100+1;

 tmp=tmp/100;

 updt[i][1]=temp[N-1][1];

 updt[i][0]=temp[N-1][0];

 updt[i][4]=temp[N-1][4];

 updt[i][5]=temp[N-1][5];

 updt[i][8]=1/N;

 int rt=0,lt=N,key=(rt+lt)/2;

 while(rt!=lt+1 && lt!=rt+1)

 {

 key=(rt+lt)/2;

 if(temp[key][9]==tmp)

 {

 break;

 }

 else if(temp[key][9]>tmp)

 {

 lt=key;

 }

 else if(temp[key][9]<tmp)

 {

 rt=key;

 }

 }

 updt[i][1]=temp[key][1];

 updt[i][0]=temp[key][0];

 updt[i][3]=temp[key][3];

 updt[i][2]=temp[key][2];

 updt[i][4]=temp[key][4];

 updt[i][5]=temp[key][5];

48

 updt[i][6]=temp[key][6];

 updt[i][7]=temp[key][7];

 updt[i][8]=(double)1/N;

 img[3*(int)(w*updt[i][1]+updt[i][0])]=0;img[3*(int)(w*updt[i][1]+updt[i

][0])+1]=255;img[3*(int)(w*updt[i][1]+updt[i][0])+1]=0;

 }

}

void crhist(unsigned char *img,double *hist,int w,int h,double obj[4])

{

 long int i=0;

 int x,y,wt,ht,tot=0;

 x=obj[0];y=obj[1];wt=obj[2];ht=obj[3];

 double mr=0,mg=0,mb=0;

 for(i=0;i<=(257*4);i++)

 {

 hist[i]=0;

 }

 for(i=w*(y-ht/2);i<w*h && i<w*(y+ht/2) && i>0; i++)

 {

 if(i%w > x-wt/2 && i%w < x+wt/2)

 {

 tot++;

 int r=img[3*i],g=img[3*i+1],b=img[3*i+2];

 hist[r]++;

 hist[256+g]++;

 hist[256*2+b]++;

 }

 }

49

 mr=mg=mb=wt*(ht-1);

 for(i=0;i<256;i++)

 {

 hist[i]/=mr;

 hist[256+i]/=mg;

 hist[256*2+i]/=mb;

 }

}

void rep(IplImage *img,double obj[4],int w,int h)

{

 int x1,y1,wt,ht,tot=0;

 CvPoint p1,p2,p3,p4,c;

 x1=obj[0];y1=obj[1];wt=obj[2];ht=obj[3];

 p1.x=x1-wt/2;p1.y=y1-ht/2;p2.x=x1-

wt/2;p2.y=y1+ht/2;p3.x=x1+wt/2;p3.y=y1-ht/2;p4.x=x1+wt/2;p4.y=y1+ht/2;

 CvMat im;

 cvRectangle(img,p1,p4,cvScalar(0,255,0,100),1,8,0);

}

float comphist(double *hist1,double *hist2)

{

 double dist[3]={0.0,0.0,0.0};

 for(int i=0;i<256;i++)

 {

 dist[0]+=sqrt(hist1[i]*hist2[i]);

50

 dist[1]+=sqrt(hist1[256+i]*hist2[256+i]);

 dist[2]+=sqrt(hist1[256*2+i]*hist2[256*2+i]);

 }

 dist[0]=sqrt(abs(1-dist[0]));

 dist[1]=sqrt(abs(1-dist[1]));

 dist[2]=sqrt(abs(1-dist[2]));

 return((dist[0]+dist[1]+dist[2])/3);

}

51

APPENDIX-C

Main.cpp

#include "main.h"

#include "testapp.h"

// set up DMA descriptors (one for each frame, then repeat)

// small descriptor model, only start address needs to be fetched

tDMA_descriptor DMA_PPI0_first = {&DMA_PPI0_second, sFrame0};

tDMA_descriptor DMA_PPI0_second = {&DMA_PPI0_third , sFrame1};

tDMA_descriptor DMA_PPI0_third = {&DMA_PPI0_fourth, sFrame2};

tDMA_descriptor DMA_PPI0_fourth = {&DMA_PPI0_first , sFrame3};

volatile int current_in_Frame = -1; // 0, 1, 2 or 3 ... indicates the last

frame that was received COMPLETELY

bool Set_PACK32 = false;

bool Set_Entire_Field = false;

// User program

void main() {

 // unblock Core B if dual core operation is desired

#ifndef RUN_ON_SINGLE_CORE

 *pSICA_SYSCR &= 0xFFDF; // clear bit 5 to unlock

#endif

 // set Clocks

 Set_PLL((short)(CORECLK/CLKIN), (short)(CORECLK/SYSCLK));

 // sets Core and System Clocks to the values defined in

system.h

52

 // initialise SDRAM

 InitSDRAM();

 *pTC_PER = 0x0770; // set DMA traffic control register

to favour unidirectional transfers to SDRAM

 // initialise Video Encoder ADV7179

 Reset_ADV7179();

 // initialise Video Decoder ADV7183

 Reset_ADV7183();

 // initialise PPI0 and associated DMA channel for Video IN

 current_in_Frame = -1; // no frames received yet

 semaphore_frames_received = false; // do not start output stream yet

 semaphore_frames_completed = false; // do not start output stream

yet

 Set_Entire_Field = false;

#ifdef ENTIRE_FIELD_MODE

 Set_Entire_Field = true;

#endif

 Set_PACK32 = false;

#ifdef PACK_32

 Set_PACK32 = true;

#endif

 InitPPI0(Set_Entire_Field, Set_PACK32, &DMA_PPI0_first,

PIXEL_PER_LINE, LINES_PER_FRAME);

 // initialise Interrupts

 InitInterrupts_coreA();

53

 // enable transfers

 EnablePPI0();

w=PIXEL_PER_LINE,h=LINES_PER_FRAME,t=0;

 // main loop, just wait for interrupts

 while(1) {

 // idle(); // do nothing

 // check for PPI framing error

 if (*pPPI0_STATUS & FT_ERR)

 {

 // error occurred -- clear error and restart video transfer

 *pPPI0_STATUS &= ~FT_ERR;

 semaphoreResetVideo = true;

 while(semaphoreResetVideo); // wait for core B to reset

video

 DisablePPI0();

 current_in_Frame = -1; // no frames received yet

 semaphore_frames_received = false;

 InitPPI0(Set_Entire_Field, Set_PACK32,

&DMA_PPI0_first, PIXEL_PER_LINE, LINES_PER_FRAME);

 EnablePPI0();

 }

 if (semaphore_frames_received)

 {

 semaphore_frames_received = false;

 //Call process Video with the currentFrame -1 (the frame just

filled)

 ProcessVideo((current_in_Frame-1) % 4);

 }

54

 } // while(1)

} // main

void ProcessVideo(int FrameToProcess)

{

 pix2=cvCreateImage(cvSize(w,h), IPL_DEPTH_8U, 3);

 switch(FrameToProcess)

 {

case 0:memcpy(pix2->imageData,(const void *)sFrame0,pix2->imageSize);

break;

case 1:memcpy(pix2->imageData,(const void *)sFrame1,pix2->imageSize);

break;

case 2:memcpy(pix2->imageData,(const void *)sFrame2,pix2->imageSize);

break;

case 3:memcpy(pix2->imageData,(const void *)sFrame3,pix2->imageSize);

 }

 pix3=cvCloneImage(pix2);

 if(t==0)

 {

 (refpts).clear();

cvCvtColor(pix3,pix2, CV_RGB2HSV);

crhist((unsigned char *)pix2->imageData,refhist,w,h,obj);

obj[0]=w/2;obj[1]=h/2;obj[2]=80;obj[3]=60;obj[4]=obj[5]=1;obj[6]=obj[7]=0;

init((unsigned char *)pix3->imageData,refhist,&refpts,updt,w,h);

55

obj[0]=w/2;obj[1]=h/2;obj[2]=80;obj[3]=60;obj[4]=obj[5]=1;obj[6]=obj[7]=0;

rep(pix3,obj,w,h);

}

if(t>0)

{

evolve((unsigned char *)pix3->imageData,updt,refhist,w,h);

msrmtupdate((unsigned char *)pix3->imageData,updt,&refpts,refhist,w,h);

 exobj(updt,obj);

rep(pix3,obj,w,h);

resample((unsigned char *)pix3->imageData,updt,0,w,h,t);

}

switch(FrameToProcess)

 {

case 0: memcpy((void *)sFrame0,pix3->imageData,pix2->imageSize);break;

 case 1:memcpy((void *)sFrame1,pix3->imageData,pix2->imageSize);break;

case 2:memcpy((void *)sFrame2,pix3->imageData,pix2->imageSize);break;

case 3:memcpy((void *)sFrame3,pix3->imageData,pix2->imageSize);

 }

 //Do processing in here

 //Set Semaphore to indicate that the frame is complete

 semaphore_frames_completed = true;

}

