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ABSTRACT 

The main aim of the project is to realize an object tracking algorithm in 

an autonomous Unmanned Aerial Vehicles (UAV) that enables it to track 

ground moving object. This object tracking algorithm used in this project is a 

particle filter in combination with SURF feature detectors. The particle filter 

also known as condensation algorithm is an algorithm based on Bayesian 

inference that represent the pdf (Probability Density Function) as a set of 

particles and uses a colour histogram as the observation model of the reference 

image to be tracked. The SURF (Speeded Up Robust Features) is an improved 

version of SIFT(Shift Invariant Feature Transform).It applies  mathematical 

operation to the reference image and stores the keypoints in the form of vectors. 

These keypoints also called features, are very distinct to any image. The SURF 

is rotation, scale, and illumination invariant. In our hybrid approach we use both 

the above mentioned algorithms. Normally, SURF keeps on tracking the object. 

But at times SURF can be detect many false positives. Our program checks if 

the object detected by SURF is the object to be tracked, if not then the particle 

filter takes over. The processor used here is an advanced digital signal processor 

from Blackfin  BF561-EZ-kit. 
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CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION 

The vision-based control of Unmanned Aerial Vehicles (UAVs) has 

become a very active field of research in the last decade. Vision indeed provides 

a cheap, passive and rich source of information, and low weight cameras can be 

embedded even on small-size flying UAVs. Until now, most of the efforts have 

been concentrated on developing vision-based control methods for autonomous 

take off, landing, stabilization and navigation, in which the visual information is 

usually obtained using a known model of a target or the environment, key 

images, or texture points for motion estimation or optical flow computation. To 

track arbitrary objects is a key ability for autonomous agents to fulfil many 

different tasks like surveillance, guiding or following as well as interacting with 

and learning from humans. 

1.2 AIM AND OBJECTIVE 

The aim of the project is to develop an object tracking algorithm that 

involves a combination of SURF feature detector and particle filter algorithm 

with the aim of porting the algorithm on-board a quadrotor. Both the algorithm 

has distinct desirable characters, by combining both algorithms we get 

robustness and the advantages of both the algorithms.   

 

 

 

 

 

 

CHAPTER 2 
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RECENT TRENDS IN UAV OBJECT TRACKING 

2.1   FACTORS LEADING TO SEVERAL APPROACHES 

Many successful and accurate object tracking approaches have been 

proposed in recent years. However, many of them are not applicable for the 

tasks of mobile robots, because the domain violates several of the underlying 

assumptions. There is no static background and no fixed target appearance and 

the image quality can be bad due to insufficient illumination or glare. In some 

applications one cannot build a complex target model off-line, because the kind 

of object to track is not known in advance. Generally, one does not have a set of 

calibrated cameras for 3D reconstruction. And finally, the computational power 

is very limited because of small form factors and the available energy, but at the 

same time quick reactions are needed when interacting with a rapidly changing 

environment. There are several algorithms followed for object tracking and are 

discussed below. 

 

2.2   ADAPTIVE ALGORITHM 

The core of this method is a novel observation model and the way it is 

automatically adapted to a changing object and background appearance over 

time [2]. The model is integrated into the well known Condensation algorithm 

(SIR filter)for statistical inference, and it consists of a boosted ensemble of 

simple threshold classifiers built upon center-surround Haar-like features, which 

the filter continuously updates based on the images perceived. Optimizations 

and reasonable approximations to limit the computational costs were presented. 

Thus, the final algorithms are capable of processing video input in real time. 

To experimentally investigate the gain of adapting the observation model, two 

different approaches with a non-adapting version of observation model were 
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compared: maintaining a single observation model for all particles, and 

maintaining individual observation models for each particle. In addition, 

experiments were conducted to compare system performances between the 

proposed algorithms and two other state of the art Condensation based tracking 

approaches. 

 

2.3   LAYER SEGMENTATION APPROACH  

In this approach [5], layer segmentation approach with background 

stabilization and post track refinement is combined to reliably detect small 

moving objects at the relatively low processing speed. A fast tracking algorithm 

that has been optimized for real-time application was employed. To classify 

vehicle and person from the detected objects, a (Histogram Of Oriented 

Gradient ) HOG based vehicle vs. person classifier is designed and integrated 

with the tracking post processing. 

 

2.4   KALMAN FILTER BASED APPROACH 

This approach[3] uses multiple independent object tracking algorithms as 

inputs to a single Kalman filter. A function for estimating each algorithm’s error 

from related features is trained using linear regression. This error is used as the 

algorithm’s measurement variance. With a dynamic measurement error 

covariance computed from these estimates, an overall object tracking filter that  

combines each algorithm’s best-case behavior was produced while diminishing 

worst-case behavior. This filter is intended to be robust without being 

programmed with any environment-specific rules. 

 

 

CHAPTER 3 
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OBJECT TRACKING 

3.1   INTRODUCTION 

The objective of video tracking is to associate target objects in 

consecutive video frames. The association can be especially difficult when the 

objects are moving fast relative to the frame rate. Another situation that 

increases the complexity of the problem is when the tracked object changes 

orientation over time. For these situations video tracking systems usually 

employ a motion model which describes how the image of the target might 

change for different possible motions of the object. 

Examples of simple motion models are: 

 When tracking planar objects, the motion model is a 2D transformation 

(affine transformation or homography) of an image of the object (e.g. the 

initial frame). 

 When the target is a rigid 3D object, the motion model defines its aspect 

depending on its 3D position and orientation. 

 For video compression, key frames are divided into macroblocks. The 

motion model is a disruption of a key frame, where each macroblock is 

translated by a motion vector given by the motion parameters. 

 The image of deformable objects can be covered with a mesh, the motion of 

the object is defined by the position of the nodes of the mesh. 

 

 

 

 

3.2   TYPES OF ALGORITHM USED 

http://en.wikipedia.org/wiki/Frame_rate
http://en.wikipedia.org/wiki/Affine_transformation
http://en.wikipedia.org/wiki/Homography_(computer_vision)
http://en.wikipedia.org/wiki/Video_compression
http://en.wikipedia.org/wiki/Key_frame
http://en.wikipedia.org/wiki/Macroblock
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To perform video tracking an algorithm analyzes sequential video 

frames and outputs the movement of targets between the frames. There are a 

variety of algorithms, each having strengths and weaknesses. Considering the 

intended use is important when choosing which algorithm to use. There are two 

major components of a visual tracking system: target representation and 

localization, as well as filtering and data association. 

3.2.1   TARGET REPRESENTATION AND LOCALIZATION 

It is mostly a bottom-up process. These methods give a variety of tools for 

identifying the moving object. Locating and tracking the target object 

successfully is dependent on the algorithm. For example, using blob tracking is 

useful for identifying human movement because a person's profile changes 

dynamically. Typically the computational complexity for these algorithms is 

low. The following are some common target representation and 

localization algorithms: 

 Blob tracking: segmentation of object interior (for example blob detection, 

block-based correlation or optical flow) 

 Kernel-based tracking (mean-shift tracking): an iterative localization 

procedure based on the maximization of a similarity measure (Bhattacharyya 

coefficient). 

 Contour tracking: detection of object boundary (e.g. active contours 

or Condensation algorithm) 

 Visual feature matching: registration 

 

 

 

3.2.2   FILTERING AND DATA ASSOCIATION:  

http://en.wikipedia.org/wiki/Video_frame
http://en.wikipedia.org/wiki/Video_frame
http://en.wikipedia.org/wiki/Blob_detection
http://en.wikipedia.org/wiki/Optical_flow
http://en.wikipedia.org/wiki/Mean-shift
http://en.wikipedia.org/wiki/Bhattacharyya_coefficient
http://en.wikipedia.org/wiki/Bhattacharyya_coefficient
http://en.wikipedia.org/wiki/Condensation_algorithm
http://en.wikipedia.org/wiki/Image_registration
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It is mostly a top-down process, which involves incorporating prior 

information about the scene or object, dealing with object dynamics, and 

evaluation of different hypotheses. These methods allow the tracking of 

complex objects along with more complex object interaction like tracking 

objects moving behind obstructions. Additionally the complexity is increased if 

the video tracker (also named TV tracker or target tracker) is not mounted on 

rigid foundation (on-shore) but on a moving ship (off-shore), where typically an 

inertial measurement system is used to pre-stabilize the video tracker to reduce 

the required dynamics and bandwidth of the camera system. The computational 

complexity for these algorithms is usually much higher. The following are some 

common filtering algorithms: 

 Kalman filter: an optimal recursive Bayesian filter for linear functions 

subjected to Gaussian noise. 

 Particle filter: useful for sampling the underlying state-space distribution of 

nonlinear and non-Gaussian processes. 
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http://en.wikipedia.org/wiki/Kalman_filter
http://en.wikipedia.org/wiki/Particle_filter
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COMPUTER VISION USING OPEN CV 

4.1   INTRODUCTION 

Computer vision is a field that includes methods for 

acquiring, processing, analyzing, and understanding images and, in general, 

high-dimensional data from the real world in order to produce numerical or 

symbolic information, e.g., in the forms of decisions. A theme in the 

development of this field has been to duplicate the abilities of human vision by 

electronically perceiving and understanding an image. This image 

understanding can be seen as the disentangling of symbolic information from 

image data using models constructed with the aid of geometry, physics, 

statistics, and learning theory. Computer vision has also been described as the 

enterprise of automating and integrating a wide range of processes and 

representations for vision perception. 

4.2 APPLICATIONS 

Applications range from tasks such as industrial machine vision systems 

which, say, inspect bottles speeding by on a production line, to research into 

artificial intelligence and computers or robots that can comprehend the world 

around them. The computer vision and machine vision fields have significant 

overlap. Computer vision covers the core technology of automated image 

analysis which is used in many fields. Machine vision usually refers to a process 

of combining automated image analysis with other methods and technologies to 

provide automated inspection and robot guidance in industrial applications. 

As a scientific discipline, computer vision is concerned with the theory behind 

artificial systems that extract information from images. The image data can take 

many forms, such as video sequences, views from multiple cameras, or multi-

dimensional data from a medical scanner. 

http://en.wikipedia.org/wiki/Digital_image_processing
http://en.wikipedia.org/wiki/Machine_vision
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As a technological discipline, computer vision seeks to apply its theories and 

models to the construction of computer vision systems. Examples of 

applications of computer vision include systems for: 

 Controlling processes, e.g., an industrial robot; 

 Navigation, e.g., by an autonomous vehicle or mobile robot; 

 Detecting events, e.g., for visual surveillance or people counting; 

 Organizing information, e.g., for indexing databases of images and image 

sequences; 

 Modelling objects or environments, e.g., medical image analysis or 

topographical modelling. 

 Interaction, e.g., as the input to a device for computer-human interaction, 

and 

 Automatic inspection, e.g., in manufacturing applications. 

Sub-domains of computer vision include scene reconstruction, event 

detection, video tracking, object recognition, learning, indexing, motion 

estimation, and image restoration. 

In most practical computer vision applications, the computers are pre-

programmed to solve a particular task, but methods based on learning are now 

becoming increasingly common. 

 

4.3   OPENCV 

OpenCV (Open Source Computer Vision) is a library of programming 

functions mainly aimed at real-time computer vision, developed by Intel, and 

now supported by Willow Garage and Itseez. It is free for use under the open 

source BSD license. The library is cross-platform. It focuses mainly on real-

time image processing. If the library finds Intel's Integrated Performance 

http://en.wikipedia.org/wiki/Industrial_robots
http://en.wikipedia.org/wiki/Autonomous_vehicle
http://en.wikipedia.org/wiki/People_counter
http://en.wikipedia.org/wiki/Computer-human_interaction
http://en.wikipedia.org/wiki/Video_tracking
http://en.wikipedia.org/wiki/Object_recognition
http://en.wikipedia.org/wiki/Motion_estimation
http://en.wikipedia.org/wiki/Motion_estimation
http://en.wikipedia.org/wiki/Image_restoration
http://en.wikipedia.org/wiki/Library_(computing)
http://en.wikipedia.org/wiki/Library_(computing)
http://en.wikipedia.org/wiki/Computer_vision
http://en.wikipedia.org/wiki/Intel_Corporation
http://en.wikipedia.org/wiki/Willow_Garage
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/BSD_license
http://en.wikipedia.org/wiki/Cross-platform
http://en.wikipedia.org/wiki/Integrated_Performance_Primitives
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Primitives on the system, it will use these proprietary optimized routines to 

accelerate it. 

OpenCV's application areas include: 

 2D and 3D feature toolkits 

 Ego motion estimation 

 Facial recognition system 

 Gesture recognition 

 Human–computer interaction (HCI) 

 Mobile robotics 

 Motion understanding 

 Object identification 

 Segmentation and Recognition 

 Stereo sis Stereo vision: depth perception from 2 cameras 

 Structure from motion (SFM) 

 Motion tracking 

 Augmented reality 

 

4.4   CONTENTS OF MACHINE LEARNING LIBRARY 

To support some of the above areas, OpenCV includes a statistical machine 

learning library that contains: 

 Boosting (meta-algorithm) 

 Decision tree learning 

 Gradient boosting trees 

 Expectation-maximization algorithm 

 k-nearest neighbour algorithm 

 Naive Bayes classifier 

http://en.wikipedia.org/wiki/Integrated_Performance_Primitives
http://en.wikipedia.org/wiki/Egomotion
http://en.wikipedia.org/wiki/Facial_recognition_system
http://en.wikipedia.org/wiki/Gesture_recognition
http://en.wikipedia.org/wiki/Human%E2%80%93computer_interaction
http://en.wikipedia.org/wiki/Mobile_robotics
http://en.wikipedia.org/w/index.php?title=Motion_understanding&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Object_identification&action=edit&redlink=1
http://en.wikipedia.org/wiki/Segmentation_(image_processing)
http://en.wikipedia.org/wiki/Stereopsis
http://en.wikipedia.org/wiki/Structure_from_motion
http://en.wikipedia.org/wiki/Video_tracking
http://en.wikipedia.org/wiki/Augmented_reality
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Boosting_(meta-algorithm)
http://en.wikipedia.org/wiki/Decision_tree_learning
http://en.wikipedia.org/wiki/Gradient_boosting
http://en.wikipedia.org/wiki/Expectation-maximization_algorithm
http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
http://en.wikipedia.org/wiki/Naive_Bayes_classifier
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 Artificial neural networks 

 Random forest 

 Support vector machine (SVM) 

 

4.5   PROGRAMMING LANGUAGE USED IN OPENCV 

OpenCV is written in C++ and its primary interface is in C++, but it still 

retains a less comprehensive though extensive older C interface. There are now 

full interfaces in Python, Java and MATLAB/OCTAVE (as of version 2.5). The 

API for these interfaces can be found in the online documentation. Wrappers in 

other languages such as C#, Ch, Ruby have been developed to encourage 

adoption by a wider audience. 

All of the new developments and algorithms in OpenCV are now developed in 

the C++ interface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 5 

 

PARTICLE FILTER USING BAYESIAN INFERENCE 

http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Random_forest
http://en.wikipedia.org/wiki/Support_vector_machine
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/MATLAB
http://en.wikipedia.org/wiki/GNU_Octave
http://en.wikipedia.org/wiki/C_Sharp_(programming_language)
http://en.wikipedia.org/wiki/Ch_(computer_programming)
http://en.wikipedia.org/wiki/Ruby_(programming_language)
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5.1   BAYESIAN INFERENCE 

 

Bayesian inference derives the posterior probability as a consequence of 

two antecedents, a prior probability and a "likelihood function" derived from a 

probability model for the data to be observed. Bayesian inference computes the 

posterior probability according to Bayes' rule: 

 

Where 

  denotes a conditional probability; more specifically, it means given. 

 stands for any hypothesis whose probability may be affected 

by data (called evidence below). Often there are competing hypotheses, 

from which one chooses the most probable. 

 The evidence  corresponds to new data that were not used in computing 

the prior probability. 

 , the prior probability, is the probability of  before  is 

observed. This indicates one's previous estimate of the probability that a 

hypothesis is true, before gaining the current evidence. 

 , the posterior probability, is the probability of  given , 

i.e., after  is observed. This tells us what we want to know: the 

probability of a hypothesis given the observed evidence. 

 is the probability of observing  given . As a function 

of E with H fixed, this is the likelihood. The likelihood function 

should not be confused with P(H | E) as a function of H rather than of E. 

It indicates the compatibility of the evidence with the given hypothesis. 

 is sometimes termed the marginal likelihood or "model evidence". 

This factor is the same for all possible hypotheses being considered. 

http://en.wikipedia.org/wiki/Posterior_probability
http://en.wikipedia.org/wiki/Consequence_relation
http://en.wikipedia.org/wiki/Antecedent_(logic)
http://en.wikipedia.org/wiki/Prior_probability
http://en.wikipedia.org/wiki/Likelihood_function
http://en.wikipedia.org/wiki/Bayes%27_rule
http://en.wikipedia.org/wiki/Conditional_probability
http://en.wikipedia.org/wiki/Experimental_data
http://en.wikipedia.org/wiki/Prior_probability
http://en.wikipedia.org/wiki/Posterior_probability
http://en.wikipedia.org/wiki/Likelihood_function
http://en.wikipedia.org/wiki/Marginal_likelihood
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(This can be seen by the fact that the hypothesis  does not appear 

anywhere in the symbol, unlike for all the other factors.) This means that 

this factor does not enter into determining the relative probabilities of 

different hypotheses. 

Note that, for different values of , only the factors  and 

 affect the value of . As both of these factors appear in the 

numerator, the posterior probability is proportional to both. In words: 

 (more exactly) The posterior probability of a hypothesis is determined by 

a combination of the inherent likeliness of a hypothesis (the prior) and 

the compatibility of the observed evidence with the hypothesis (the 

likelihood). 

 (more concisely) Posterior is proportional to likelihood times prior. 

Note that Bayes' rule can also be written as follows: 

 

where the factor  represents the impact of  on the probability 

of . 

5.2   RECURSIVE BAYES FILTER: 

A Bayes filter is an algorithm used in computer science for calculating the 

probabilities of multiple beliefs to allow a robot to infer its position and 

orientation. Essentially, Bayes filters allow robots to continuously update their 

most likely position within a coordinate system, based on the most recently 

acquired sensor data. This is a recursive algorithm. It consists of two parts: 

prediction and innovation. If the variables are linear and normally 

distributed the Bayes filter becomes equal to the Kalman filter. 

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Robot
http://en.wikipedia.org/wiki/Normal_Distribution
http://en.wikipedia.org/wiki/Normal_Distribution
http://en.wikipedia.org/wiki/Kalman_filter
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In a simple example, a robot moving throughout a grid may have several 

different sensors that provide it with information about its surroundings. The 

robot may start out with certainty that it is at position (0,0). However, as it 

moves farther and farther from its original position, the robot has continuously 

less certainty about its position; using a Bayes filter, a probability can be 

assigned to the robot's belief about its current position, and that probability can 

be continuously updated from additional sensor information. 

5.2.1   MODE  

The true state  is assumed to be an unobserved Markov process, and the 

measurements  are the observed states of a Hidden Markov Model (HMM).  

 

Fig 5.1: Bayesian Network of HMM 

Because of the Markov assumption, the probability of the current true 

state given the immediately previous one is conditionally independent of the 

other earlier states. 

 

Similarly, the measurement at the k-th timestep is dependent only upon 

the current state, so is conditionally independent of all other states given the 

current state. 

 

http://en.wikipedia.org/wiki/Markov_process
http://en.wikipedia.org/wiki/Hidden_Markov_Model
http://en.wikipedia.org/wiki/File:HMM_Kalman_Filter_Derivation.svg
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Using these assumptions the probability distribution over all states of the HMM 

can be written simply as: 

 

However, when using the Kalman filter to estimate the state x, the 

probability distribution of interest is associated with the current states 

conditioned on the measurements up to the current timestep. (This is achieved 

by marginalising out the previous states and dividing by the probability of the 

measurement set.) 

This leads to the predict and update steps of the Kalman filter written 

probabilistically. The probability distribution associated with the predicted state 

is the sum (integral) of the products of the probability distribution associated 

with the transition from the (k - 1)-th timestep to the k-th and the probability 

distribution associated with the previous state, over all possible . 

 

The probability distribution of update is proportional to the product of the 

measurement likelihood and the predicted state. 

 

The denominator 

 

is constant relative to , so we can always substitute it for a coefficient , 

which can usually be ignored in practice. The numerator can be calculated and 

then simply normalized, since its integral must be unitary. 

5.3  SEQUENTIAL BAYESIAN FILTERING: 
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Sequential Bayesian filtering is the extension of the Bayesian estimation 

for the case when the observed value changes in time. It is a method to estimate 

the real value of an observed variable that evolves in time. 

The method is named: 

Filtering, when we estimate the current value given past and current 

observations, 

Smoothing, when estimating past values given present and past measures, and 

Prediction, when estimating a probable future value given the present and the 

past measures. 

The notion of Sequential Bayesian filtering is extensively used 

in control and robotics. 

5.4  SEQUENTIAL MONTE CARLO METHODS  

Particle filters or Sequential Monte Carlo (SMC) methods are a set of 

on-line posterior density estimation algorithms that estimate the posterior 

density of the state-space by directly implementing the Bayesian 

recursion equations. SMC methods use a grid-based approach, and use a set of 

particles to represent the posterior density. These filtering methods make no 

restrictive assumption about the dynamics of the state-space or the density 

function. SMC methods provide a well-established methodology for generating 

samples from the required distribution without requiring assumptions about the 

state-space model or the state distributions. The state-space model can be non-

linear and the initial state and noise distributions can take any form required. 

However, these methods do not perform well when applied to high-dimensional 

systems. SMC methods implement the Bayesian recursion equations directly by 

using an ensemble based approach. The samples from the distribution are 

represented by a set of particles; each particle has a weight assigned to it that 

http://en.wikipedia.org/wiki/Smoothing
http://en.wikipedia.org/wiki/Control_theory
http://en.wikipedia.org/wiki/Robotics
http://en.wikipedia.org/wiki/Density_estimation
http://en.wikipedia.org/wiki/Recursive_Bayesian_estimation
http://en.wikipedia.org/wiki/Recursive_Bayesian_estimation
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represents the probability of that particle being sampled from the probability 

density function. 

Weight disparity leading to weight collapse is a common issue 

encountered in these filtering algorithms; however it can be mitigated by 

including a re-sampling step before the weights become too uneven. In the re-

sampling step, the particles with negligible weights are replaced by new 

particles in the proximity of the particles with higher weights.     

 

5.5    SEQUENTIAL IMPORTANCE RESAMPLING (SIR) 

5.5.1  ALGORITHM 

Sequential importance re-sampling (SIR), the original particle filtering 

algorithm (Gordon et al. 1993), is a very commonly used particle filtering 

algorithm, which approximates the filtering distribution  by a 

weighted set of P particles 

 

The importance weights  are approximations to the relative posterior 

probabilities (or densities) of the particles such that  

. 

SIR is a sequential (i.e., recursive) version of importance sampling. As in 

importance sampling, the expectation of a function  can be approximated as 

a weighted average 

 

http://en.wikipedia.org/wiki/Resampling_(statistics)
http://en.wikipedia.org/wiki/Importance_sampling
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For a finite set of particles, the algorithm performance is dependent on the 

choice of the proposal distribution 

. 

The optimal proposal distribution is given as the target distribution 

 

However, the transition prior probability distribution is often used as 

importance function, since it is easier to draw particles (or samples) and 

perform subsequent importance weight calculations: 

 

Sequential Importance Re-sampling (SIR) filters with transition prior 

probability distribution as importance function are commonly known 

as bootstrap filter and condensation algorithm. 

Re-sampling is used to avoid the problem of degeneracy of the algorithm, 

that is, avoiding the situation that all but one of the importance weights are 

close to zero. The performance of the algorithm can be also affected by proper 

choice of re-sampling method. The stratified sampling proposed by Kitagawa 

(1996) is optimal in terms of variance. 

 

5.5.2  PROCEDURE FOR SEQUENTIAL RESAMPLING 

The steps involved in sequential re-sampling are as follows: 

 

1) For  draw samples from the proposal distribution 

 

 

2) For  update the importance weights up to a normalizing 

constant: 

http://en.wikipedia.org/wiki/Resampling_(statistics)#Bootstrap
http://en.wikipedia.org/wiki/Condensation_algorithm
http://en.wikipedia.org/wiki/Stratified_sampling
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Note that when we use the transition prior probability distribution as the 

importance function, , this simplifies to the 

following  : 

 

 

3) For  compute the normalized importance weights: 

 

 

4) Compute an estimate of the effective number of particles as 

 

 

5) If the effective number of particles is less than a given 

threshold , then perform resampling: 

a) Draw  particles from the current particle set with probabilities proportional 

to their weights. Replace the current particle set with this new one. 

b) For  set  

The term Sampling Importance Resampling is also sometimes used when 

referring to SIR filters. 
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CHAPTER 6 

ABOUT THE PROJECT WORK 

The project involves implementation of an object tracking algorithm in a 

quad rotor with an on-board camera. The algorithm used in this project is a 

combination of SURF (Speeded Up Robust Features) feature detectors and 

Condensation algorithm also called a Particle Filter. 

6.1   SURF FEATURE DETECTOR 

This is a method for object detection that is scale and rotation invariant, 

robust, fast and most importantly, can work with a single training image! 

Speeded-Up Robust Features, SURF in short.  

 

A short description of what SURF does is: 

 

 Find interest points in the image using Hessian matrices 

 Determine the orientation of these points 

 Use basic Haar wavelets in a suitably oriented square region 

around the interest points to find intensity gradients in the X and Y 

directions. As the square region is divided into 16 squares for this, 

and each such sub-square yields 4 features, the SURF descriptor 

for every interest point is 64 dimensional. 

 The 4 features are sums of gradient changes. 

 

6.2  MATCHING STRATEGY 

 

A 64 dimensional descriptor for every key point is useless without a 

method of deciding whether a query descriptor matches a training descriptor or 

not. For matching, we use the K nearest neighbour search. A KNN search 

basically computes the 'distance' between a query descriptor and all of the 



28 
 

training descriptors, and returns the K pairs with lowest distance. Here we will 

keep K=2. 

Hence we now have 2 pairs of matches for each query descriptor. So 

basically the KNN search gave us 2 matches to every query descriptor. What is 

important is how we decide which of all these matches ‘good matches’ are after 

all. The strategy we employ is (each match has a 'distance' associated with it) . 

For every query descriptor, 

If distance(match1) < 0.8 * distance (match2), match1 is a good match 

otherwise discard both match1 and match2 as false matches. 

 

6.3  REAL-TIME IMPLEMENTATION 

 Take an image of the object you want to detect and extract SURF 

descriptors for it. It is important for this image to contain only the 

object and to be free from any harsh lighting.  

 Now do the same for every frame coming from your camera. 

 Employ the matching strategy to match descriptors from every 

frame with the descriptors of the object and find out the 'good 

matches'. 

 Create a window with the object image on one side and the video 

playing on the other side. Draw good matches between the two. 

 To get a bounding box around a detected object, using the good 

matches, find a homography that transforms points from the object 

image to the video frame. Using this homography , transform the 4 

corners of the object image. Consider these 4 transformed points as 

vertices and draw a box in the video frame.  
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6.4   THE CONDENSATION ALGORITHM 

6.4.1 THE OBJECT STATE 

We have employed a first order motion model in order to predict the future 

target position in the next few frames of the sequence and avoid the exhaustive 

search over the entire frame. The state vector has therefore been defined so as to 

include the position and size of the rectangular bounding box of the target 

object in the image plane, as well as its velocity and changes in size. In 

particular, the state space for our tracker is defined over vectors of the form as 

shown in Fig 6.1: 

 

 

 

 

 

 

 

Xk = (x, y, w, h, x’, y’, w’, h’) 

Fig 6.1: State space representation of the tracker 

 

 

Here as defined in the picture the (x,y) represents the position of the 

object in the image frame with a bounding box of width w and height h. These 

form the first four term of the equation and the other four terms form the 

x 

w 

h 

y 

(x,y) 
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derivative for the four terms i.e.) x’, y’, w’, h’ denote the rate of change of x, y, 

w, h respectively. 

6.4.2 THE OBSERVATION MODEL 

 The observation model used in this project is the colour histogram of the 

reference object to be tracked. The histogram of the bounding box of 

dimensions w and h centred on (x,y) is considered. 

6.4.3 INITIALISING THE POINTS 

 Let initially the target position is known, N points are taken around it 

with Gaussian distribution. All of these points have equal weights assigned to 

each other so that the total sums up to one hence weights are initialised to 1/N. 

6.4.4 MEASUREMENTS UPDATE EQUATION 

Now for each and every point compute the histogram and calculate its 

distance from the reference histogram. Let q
*
 = {qu*}u=1,2,…m. denote the 

reference histogram, determined in the tracking initialisation step. Then, the 

tracking process aims to find in each frame k, the candidate state 

Xk which histogram q(xk) is the “closest” to the reference histogram q
*
. To 

achieve this, a correlation criterion in the histogram space is provided by 

Bhattacharyya coefficient: 

ϱ(xk) = ϱ(q*; q(xk)) =Σ√(qu
* 
qu) 

A candidate state xk for the object in frame k is then compared to the reference 

object using the Bhattacharyya distance: 

d(xk) = d(q
*
, q(xk)) =√(1-ϱ(xk)) 

The likelihood function is derived from the distance defined in equation. The 

spatial information is yielded by computing n
th

 histograms in the n
th

 parts as in.  
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Formally, the likelihood of a state xk is then defined by: 

 

p(zk | xk) α exp(-λdm
2
(xk))  

where λ is a constant parameter tuned empirically (a typical value is λ = 20).For 

initialisation, the particles are sampled on a Gaussian distribution around the 

initial known position. The weights are assigned the value of the likelihood and 

then normalised such that the sum of all the weights of the particles add up to 1. 

 

 

6.4.5 RE-SAMPLING 

 

The N particle states are resampled with replacement and the probability 

of a particle getting resampled is directly proportional to the weight of the 

particle. Hence, this way particles with higher weights are sampled for next 

generation while particles with lesser weights get discarded. Each particle is 

again assigned a weight of 1/N. 

 

6.4.6 STATE UPDATE 

 

The velocity is incremented depending on the distance of current centre 

of mass of the particles. The increment of velocity is directly proportional to the 

distance of the centre of mass. As a consequence if the center of mass is more 

similar to the reference image then the particles are propagated only to a certain 

amount else they are propagated far out. The position vector is updated by 

adding the current velocity vectors. 
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Then the cycle of measurement update, re-sampling is repeated at any 

instant the centre of mass of the particles gives the current position of the 

object. 

6.5 THE ALGORITHM 

 

1. In our project the algorithm is a combination of the above mentioned 

algorithm. 

2. Initially the colour histogram in HSV colour space of the object is stored 

and the SURF features for the reference object are stored. 

3. Then once the video frames starts pouring in the SURF, detects the object 

and draws a bounding box around the object. 

4. First we detect whether the bounding rectangle is of correct size and 

whether it is a rectangle and calculate the colour histogram of the center 

of the bounding box. 

5. If all of the above conditions hold then the all the particles of particle 

filter is given the centre of the bounding box and all its weights are 

initialised to one. 

6. If any of the above condition fails then the particle filter automatically 

takes over and starts tracking the object using the algorithm mentioned 

above. 

7. Once the SURF starts producing correct transformations we resume 

tracking using SURF. 
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6.6 IMPLEMENTATION AND RESULTS 

 

In this project the on-board processor is an ADSP BF561-EZ KIT board. 

The camera is attached to the board and the board runs on a visual DSP kernel. 

We use visual DSP IDE for programming and we use openCV library for the 

computer vision primitives. 

The ADSP bf561 is a dual core processor with cores named as core A and 

core B. It is interfaced with the input video device and an output video device 

using a video decoder and an encoder through the PPI (Parallel Peripheral 

Interface)  0 and 1. 

Our algorithm is situated in core A as it gets the input from the PPI0 

processes the frame and gives it back via the output frame. 

 

The Fig 6.2   shows a ball being tracked by the particle filter. As it can be 

seen, the blue particles are the particles evolved from the previous generation of 

re sampled particles, using the given dynamic model and, after performing 

measurement update , the particles are weighed based on the observation model, 

Only the green particles that have a higher weight are chosen with higher 

probability in the re-sampling step. This clearly illustrates random weighted 

sampling. The location of image at any instant is the weighted mean of the 

particles and by finding the mean we get the center of the image. A bounding 

box is drawn around the object using the center of mass. 
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Fig 6.2: Object tracked by the Particle Filter 

 The Fig 6.3  illustrates the SURF feature detection algorithm. The 

SURF automatically draws a bounding box around the detected object from the 

detected features that are indicated by blue circles. 

In Fig 6.4 partial or total occlusion to the target object occurs and when 

the occlusion is released in Fig 6.5 the particle filter resumes tracking the 

object. It can be seen that although the blue dot is dense around the lower 

portion of the image and sparse in the object location the particle filter 

accurately samples the particle near the object that has more weight indicated by 

the green dot. 
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Fig 6.3: Object being tracked by SURF feature descriptor 

 

 

Fig 6.4 : Total occlusion of the object 
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Fig 6.5: Retracking of the object by the Particle Filter 

 

The openCV implementation of the program can be found in the 

appendix. The first program ‘testapp.h’ is the header file for our program that 

declares the various variables and functions necessary for our implementation.  

The second program ‘testapp.c’ is the main source code for our implementation. 

It contains the definition of our functions declared in ‘testapp.h’. The main.cpp 

is the main function of the core A processor in which the ‘processvideo()’ 

function contains the call to our algorithm.       
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CHAPTER 7 

CONCLUSION 

7.1   OUTCOME OF THE PROJECT 

An object tracking algorithm using a combined approach of SURF and 

particle filter is completed. This algorithm is scale, rotation, illumination 

invariant, robust against occlusion. The algorithm is realized in the blackfin 

ADSP bf561 EZ KIT and successfully installed in UAV. 

 

7.2  FUTURE SCOPE 

 The particle filter can further be enhanced by having an adaptive 

observation model.  

 We can combine a learning algorithms such as Self Organising 

Maps(SOMs) to learn every particular feature of the target image 

and hence leading to robust tracking. 

 Another approach is to create an ensemble of classifiers by 

combining all the approaches mentioned so far and build a very 

robust tracker.  

[Note: we must always bear in mind the computational complexity 

involved in any algorithm and based on the situation we should 

tweak the algorithm to get the desired performance.] 
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APPENDIX 

APPENDIX A 

PROGRAM 

 

Testapp.h 

 

#pragma once 

#include "opencv.hpp" 

#include "surf-algo\surflib.h" 

#define in 50 

#define N 50 

 

static IplImage *img,*pix2,*pix3; 

static IpVec refpts,hipts[in]; 

static IpVec pts,ppts;static IpPairVec match; 

static int refkey[10][2]; 

static int h,w,t,tg; 

static double hist1[256 * 3],hist2[256 * 3],refhist[256*3], obj[8], updt[N][9]; 

static unsigned char *pix1; 

   

 

float compkey(int refkey[][2],unsigned int numrefkey,int key[][2],unsigned int 

numkey); 

void init(unsigned char *img,double *refhist,IpVec *refpts,double updt[][9],int 

w,int h); 

float comphist(double *hist1,double *hist2); 

void crhist(unsigned char *img,double *hist,int w,int h,double obj[4]); 

void resample(unsigned char *img,double updt[][9],double *pconf,int w,int 

h,int t); 

void evolve(unsigned char *,double updt[][9],double *refhist,int,int); 

void msrmtupdate(unsigned char *img,double updt[][9], IpVec *refpts,double 

*refhist,int w,int h); 

void exobj(double updt[][9],double *obj); 

void rep(IplImage *img,double obj[4],int w,int h); 

bool isrect(CvPoint p[]); 
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APPENDIX B 

Testapp.c 

 

#include "testApp.h" 

 

float compkey(int refkey[][2],unsigned int numrefkey,int key[][2],unsigned int 

numkey); 

void init(unsigned char *img,double *refhist,IpVec *refpts,double updt[][9],int 

w,int h); 

float comphist(double *hist1,double *hist2); 

void crhist(unsigned char *img,double *hist,int w,int h,double obj[4]); 

void resample(unsigned char *img,double updt[][9],double *pconf,int w,int 

h,int t); 

void evolve(unsigned char *,double updt[][9],double *refhist,int,int); 

void msrmtupdate(unsigned char *img,double updt[][9], IpVec *refpts,double 

*refhist,int w,int h); 

void exobj(double updt[][9],double *obj); 

void rep(IplImage *img,double obj[4],int w,int h); 

bool isrect(CvPoint p[]); 

 

float err(float x) 

{ 

 float t= 1/(1+.5 *abs(x)); 

 float tu=t*exp(-x*x-1.26551+1.000023*t+.37409*t*t*t-.186288 * 

pow(t,4)+.27886*pow(t,5)-1.135203*pow(t,6)); 

 if(x) 

  return (1-tu); 

 else 

  return(tu-1); 

 

} 

 

 

void evolve(unsigned char *img,double updt[][9],double *refhist,int w,int h) 
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{ 

 double obj[8],hist[257*10],dist; 

 exobj(updt,obj); 

 IplImage *im,*im2; 

 im2=cvCreateImage( cvSize(w,h), IPL_DEPTH_8U, 3); 

 memcpy(im2->imageData,img,im2->imageSize); 

 im=cvCloneImage(im2); 

 cvCvtColor(im2,im, CV_RGB2HSV); 

 crhist((unsigned char *)im->imageData,hist,w,h,obj); 

 dist=(comphist(refhist,hist)); 

 for(int i=0;i<N;i++) 

 {  

  updt[i][4]+=(rand()%((int)(60*dist))-(int)(30*dist)); 

  updt[i][5]+=(rand()%((int)(60*dist))-(int)(30*dist)); 

  updt[i][6]+=(rand()%((int)(60*dist))-(int)(30*dist)); 

   

           updt[i][0]+=updt[i][4]; 

  updt[i][1]+=updt[i][5]; 

  updt[i][2]+=updt[i][6]; 

  updt[i][3]=(updt[i][2]*60)/80; 

   

   if((updt[i][0]<0 || updt[i][0]>320)) 

   { 

    updt[i][0]=w/2;updt[i][4]=0; 

   } 

   if((updt[i][1]<0 || updt[i][1]>240)) 

   { updt[i][1]=h/2;updt[i][5]=0; 

   } 

  if((updt[i][2]<=40 || updt[i][3]<=40)) 

   { 

    /*updt[i][2]=80; 

    updt[i][3]=60; 

    updt[i][6]=updt[i][7]=0;*/ 

   } 

     

 } 

} 
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bool isrect(CvPoint p[]) 

{ 

 

if(abs(sqrt(pow((float)p[0].x-p[2].x,2)+pow((float)p[0].y-p[2].y,2)) - 

sqrt(pow((float)p[1].x-p[3].x,2)+pow((float)p[1].y-p[3].y,2)))<9 ) 

  return 1; 

else 

  return 0; 

 

} 

void msrmtupdate(unsigned char *img,double updt[][9],IpVec *refpts,double 

*refhist,int w,int h) 

{ 

 long double tot=0,dist2=0; 

 double hist[257 * 10]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; 

 static double ptr[4],p; 

 int key[10][2]; 

 IpVec pts,tpts; 

 IplImage *cl,*tmp2; 

 cl=cvCreateImage(cvSize(w,h),IPL_DEPTH_8U,3); 

 memcpy(cl->imageData,(img),cl->imageSize); 

  

tmp2=cvCloneImage(cl); 

 surfDetDes(cl,tpts ,false, 5, 4, 2, 0.00004f); 

 IpPairVec matches; 

 IpVec ipts, ref_ipts; 

 CvPoint src_corners[4] = {cvPoint(0,0), cvPoint(80,0), cvPoint(80, 60), 

cvPoint(0, 60)}; 

 CvPoint dst_corners[4]; 

 getMatches(tpts,*refpts,matches); 

 

 int tt=0; 

 tt=translateCorners(matches, src_corners, dst_corners); 

 if (translateCorners(matches, src_corners, dst_corners)) 

    { 

      // Draw box around object 

      for(int i = 0; i < 4; i++ ) 
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      { 

        CvPoint r1 = dst_corners[i%4]; 

        CvPoint r2 = dst_corners[(i+1)%4]; 

        cvLine( cl, cvPoint(r1.x, r1.y),  cvPoint(r2.x, r2.y), cvScalar(255,255,255), 

3 ); 

      } 

  

  

      for (unsigned int i = 0; i < matches.size(); ++i) 

        drawIpoint(cl, matches[i].first); 

    } 

  

 CvPoint cpt; 

 cpt.x=((dst_corners[0].x)+(dst_corners[2].x))/2; 

 cpt.y=((dst_corners[0].y)+(dst_corners[2].y))/2; 

 p++; 

   

  if(tt) 

  { 

if((abs(ptr[2]-abs(dst_corners[0].x-dst_corners[1].x))>=30 || 

abs(ptr[3]-abs(dst_corners[0].y-dst_corners[3].y))>=30 || 

!isrect(dst_corners)) && p>3 ) 

  { 

   tt=0; 

  } 

  else 

  { 

  cvCvtColor(tmp2,cl ,CV_RGB2HSV); 

ptr[0]=cpt.x;ptr[1]=cpt.y;ptr[2]=abs(dst_corners[0].x-

st_corners[1].x);ptr[3]=abs(dst_corners[0].y-dst_corners[3].y); 

  crhist((unsigned char *)cl->imageData,hist,w,h,ptr); 

   dist2=.1*(double)exp(-2*pow(comphist(hist,refhist),2)); 

  } 

  } 

 for(int i=0;i<N;i++) 

 { 

  if(tt && dist2>.05  ) 
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 { 

updt[i][0]=cpt.x; 

updt[i][1]=cpt.y;  

updt[i][2]=ptr[2]; 

updt[i][3]=ptr[3]; 

updt[i][4]=1; 

updt[i][5]=1; 

updt[i][8]=1; 

tot++; 

 } 

 else 

     { 

 

 double pt[4]; 

 for(int k=0;k<4;k++) 

 { 

  pt[k]=updt[i][k]; 

 } 

 

 cvCvtColor(tmp2,cl, CV_RGB2HSV); 

  crhist((unsigned  char *)cl->imageData,hist,w,h,pt); 

 dist2=.1*(double)exp(-100*pow(comphist(hist,refhist),2)); 

 updt[i][8]=dist2; 

 tot+=updt[i][8]; 

   

 } 

 } 

  

 for(int i=0;i<N;i++) 

 

 { 

 updt[i][8]/=(double)tot; 

 } 

} 

void exobj(double updt[][9],double *obj) 

{ 

for(int i=0;i<8;i++) 
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{ 

 obj[i]=0; 

for(int j=0;j<N;j++) 

{ 

 obj[i]+=(double)updt[j][8]*updt[j][i]; 

  

} 

} 

 

} 

 

 

void init(unsigned char *img,double *refhist,IpVec *refpts,double updt[][9],int 

w,int h) 

{ 

 double obj[8]={0}; 

 unsigned char pix[60*80*3]={0,0}; 

  

 obj[0]=w/2;obj[1]=h/2;obj[2]=80;obj[3]=60;obj[4]=obj[5]=1;obj[6]=obj[

7]=0; 

 int x=obj[0],y=obj[1],wt=obj[2],ht=obj[3]; 

 int p=0,l=0; 

  

 IpVec pt; 

 IplImage *im; 

 im=cvCreateImage(cvSize(w,h),IPL_DEPTH_8U,3); 

 memcpy(im->imageData,img,im->imageSize); 

 surfDetDes(im,pt,false,5,4,2,0.00004f); 

  

  p=0; 

  for(int k=0;k<pt.size();k++) 

  { 

   if((pt.at(k).x>=(w/2-wt/2)) && (pt.at(k).x<=(w/2+wt/2)) && 

(pt.at(k).y>=(h/2-ht/2)) && (pt.at(k).y<=(h/2+ht/2)) ) 

 { 

    Ipoint tmp; 

    pt.at(k).x-=(w/2-wt/2); 
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    pt.at(k).y-=(h/2-ht/2); 

   (*refpts).push_back(pt.at(k)); 

    

   } 

  } 

 for(int i=0;i<N;i++) 

 { 

   

  updt[i][0]=obj[0]+(rand()%60-30); 

  updt[i][1]=obj[1]+(rand()%60-30); 

  updt[i][2]=obj[2]; 

  updt[i][3]=obj[3]; 

  updt[i][4]=obj[4]; 

  updt[i][5]=obj[5]; 

  updt[i][6]=obj[6]; 

  updt[i][7]=obj[7]; 

  updt[i][8]=(double)1/N; 

 

 img[3*(int)(w*updt[i][1]+updt[i][0])]=0;img[3*(int)(w*updt[i][1]+updt[i

][0])+1]=255;img[3*(int)(w*updt[i][1]+updt[i][0])+1]=0; 

 } 

} 

  

void resample(unsigned char *img,double updt[][9],double *pconf,int w,int 

h,int t) 

{  

 long double obj[8]={0},tot=0; 

 double temp[N][10]; 

 

 temp[0][9]=0; 

 for(int i=0;i<N;i++) 

 { 

  for(int j=0;j<9;j++) 

  { 

   temp[i][j]=updt[i][j]; 

  } 

  if (i>0) 
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  temp[i][9]=temp[i-1][9]+updt[i][8]; 

  tot+=updt[i][8]; 

 } 

  

 for(int i=0;i<N;i++) 

 { 

  double tmp=rand()%100+1; 

  tmp=tmp/100; 

  updt[i][1]=temp[N-1][1]; 

  updt[i][0]=temp[N-1][0]; 

  updt[i][4]=temp[N-1][4]; 

  updt[i][5]=temp[N-1][5]; 

  updt[i][8]=1/N; 

  int rt=0,lt=N,key=(rt+lt)/2; 

  while(rt!=lt+1 && lt!=rt+1) 

  { 

  key=(rt+lt)/2; 

  if(temp[key][9]==tmp) 

  { 

   break; 

  } 

  else if(temp[key][9]>tmp) 

  { 

   lt=key; 

  } 

  else if(temp[key][9]<tmp) 

  { 

   rt=key; 

  } 

  } 

   

  updt[i][1]=temp[key][1]; 

  updt[i][0]=temp[key][0]; 

  updt[i][3]=temp[key][3]; 

  updt[i][2]=temp[key][2]; 

  updt[i][4]=temp[key][4]; 

  updt[i][5]=temp[key][5]; 
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  updt[i][6]=temp[key][6]; 

  updt[i][7]=temp[key][7]; 

  updt[i][8]=(double)1/N; 

  

 img[3*(int)(w*updt[i][1]+updt[i][0])]=0;img[3*(int)(w*updt[i][1]+updt[i

][0])+1]=255;img[3*(int)(w*updt[i][1]+updt[i][0])+1]=0; 

 } 

} 

  

 

void crhist(unsigned char *img,double *hist,int w,int h,double obj[4]) 

{ 

 long int i=0; 

 int x,y,wt,ht,tot=0; 

  x=obj[0];y=obj[1];wt=obj[2];ht=obj[3];  

 double mr=0,mg=0,mb=0; 

 for(i=0;i<=(257*4);i++) 

 {  

  

  hist[i]=0; 

 } 

 

 for(i=w*(y-ht/2);i<w*h && i<w*(y+ht/2) && i>0; i++) 

 { 

   

  if(i%w > x-wt/2 && i%w < x+wt/2) 

  { 

   

   tot++;     

  int r=img[3*i],g=img[3*i+1],b=img[3*i+2]; 

  hist[r]++; 

  hist[256+g]++; 

  hist[256*2+b]++; 

   

  } 

   

 } 
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 mr=mg=mb=wt*(ht-1); 

 for(i=0;i<256;i++) 

 { 

  hist[i]/=mr; 

  hist[256+i]/=mg; 

  hist[256*2+i]/=mb; 

 } 

  

  

  

} 

 

void rep(IplImage *img,double obj[4],int w,int h) 

{ 

  int x1,y1,wt,ht,tot=0; 

  CvPoint  p1,p2,p3,p4,c; 

 

  x1=obj[0];y1=obj[1];wt=obj[2];ht=obj[3]; 

  p1.x=x1-wt/2;p1.y=y1-ht/2;p2.x=x1-

wt/2;p2.y=y1+ht/2;p3.x=x1+wt/2;p3.y=y1-ht/2;p4.x=x1+wt/2;p4.y=y1+ht/2; 

  CvMat im; 

  cvRectangle(img,p1,p4,cvScalar(0,255,0,100),1,8,0); 

  

  

} 

 

 

 

 

float comphist(double *hist1,double *hist2) 

{ 

 double dist[3]={0.0,0.0,0.0}; 

 for(int i=0;i<256;i++) 

 { 

 

  dist[0]+=sqrt(hist1[i]*hist2[i]); 
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  dist[1]+=sqrt(hist1[256+i]*hist2[256+i]); 

  dist[2]+=sqrt(hist1[256*2+i]*hist2[256*2+i]); 

   

 } 

  

 dist[0]=sqrt(abs(1-dist[0])); 

 dist[1]=sqrt(abs(1-dist[1])); 

 dist[2]=sqrt(abs(1-dist[2])); 

  

 return((dist[0]+dist[1]+dist[2])/3); 

  

} 
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APPENDIX-C  

Main.cpp 

 

 

 

#include "main.h" 

#include "testapp.h" 

 

// set up DMA descriptors (one for each frame, then repeat) 

// small descriptor model, only start address needs to be fetched 

 

tDMA_descriptor DMA_PPI0_first =  {&DMA_PPI0_second, sFrame0}; 

tDMA_descriptor DMA_PPI0_second =  {&DMA_PPI0_third , sFrame1}; 

tDMA_descriptor DMA_PPI0_third =  {&DMA_PPI0_fourth, sFrame2}; 

tDMA_descriptor DMA_PPI0_fourth =  {&DMA_PPI0_first , sFrame3}; 

 

 

volatile int current_in_Frame  = -1;  // 0, 1, 2 or 3  ... indicates the last 

frame that was received COMPLETELY 

 

bool Set_PACK32 = false; 

bool Set_Entire_Field = false; 

 

 

// User program 

void main() { 

 

 // unblock Core B if dual core operation is desired  

#ifndef RUN_ON_SINGLE_CORE 

 *pSICA_SYSCR &= 0xFFDF; // clear bit 5 to unlock   

#endif 

 

 // set Clocks 

 Set_PLL( (short)(CORECLK/CLKIN), (short)(CORECLK/SYSCLK));

   // sets Core and System Clocks to the values defined in 

system.h  
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 // initialise SDRAM 

 InitSDRAM(); 

 *pTC_PER = 0x0770;   // set DMA traffic control register 

to favour unidirectional transfers to SDRAM 

 

 // initialise Video Encoder ADV7179 

 Reset_ADV7179(); 

 

 // initialise Video Decoder ADV7183 

 Reset_ADV7183(); 

  

  

 // initialise PPI0 and associated DMA channel for Video IN 

 current_in_Frame  = -1;    // no frames received yet 

 semaphore_frames_received = false; // do not start output stream yet 

 semaphore_frames_completed = false; // do not start output stream 

yet 

 

 Set_Entire_Field = false; 

#ifdef ENTIRE_FIELD_MODE 

 Set_Entire_Field = true; 

#endif 

 

 Set_PACK32 = false; 

#ifdef PACK_32 

 Set_PACK32 = true; 

#endif 

 

 

  

 InitPPI0(Set_Entire_Field, Set_PACK32, &DMA_PPI0_first, 

PIXEL_PER_LINE, LINES_PER_FRAME); 

  

 

   

 // initialise Interrupts 

 InitInterrupts_coreA(); 
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 // enable transfers 

 EnablePPI0(); 

 

w=PIXEL_PER_LINE,h=LINES_PER_FRAME,t=0; 

  

 // main loop, just wait for interrupts 

 while(1) { 

 // idle();  //   do nothing 

  // check for PPI framing error 

  if (*pPPI0_STATUS & FT_ERR) 

  { 

   // error occurred -- clear error and restart video transfer 

   *pPPI0_STATUS &= ~FT_ERR; 

   semaphoreResetVideo = true; 

    

   while(semaphoreResetVideo);     // wait for core B to reset 

video 

    

   DisablePPI0(); 

   current_in_Frame  = -1;         // no frames received yet 

   semaphore_frames_received = false; 

    

   InitPPI0(Set_Entire_Field, Set_PACK32, 

&DMA_PPI0_first, PIXEL_PER_LINE, LINES_PER_FRAME); 

    

   EnablePPI0(); 

  } 

   

  if (semaphore_frames_received) 

  { 

   semaphore_frames_received = false; 

   //Call process Video with the currentFrame -1 (the frame just 

filled) 

   ProcessVideo((current_in_Frame-1) % 4); 

  } 
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 } // while(1) 

   

  

}  // main 

 

void ProcessVideo(int FrameToProcess) 

{ 

 pix2=cvCreateImage( cvSize(w,h), IPL_DEPTH_8U, 3); 

 switch(FrameToProcess) 

 { 

case 0:memcpy(pix2->imageData,(const void *)sFrame0,pix2->imageSize); 

break; 

case 1:memcpy(pix2->imageData,(const void *)sFrame1,pix2->imageSize); 

break;  

case 2:memcpy(pix2->imageData,(const void *)sFrame2,pix2->imageSize); 

break; 

case 3:memcpy(pix2->imageData,(const void *)sFrame3,pix2->imageSize); 

 } 

  

   

  

   pix3=cvCloneImage(pix2); 

   

   

 if(t==0) 

  

 { 

  (refpts).clear(); 

   

cvCvtColor(pix3,pix2, CV_RGB2HSV); 

 

crhist((unsigned char *)pix2->imageData,refhist,w,h,obj); 

 

obj[0]=w/2;obj[1]=h/2;obj[2]=80;obj[3]=60;obj[4]=obj[5]=1;obj[6]=obj[7]=0; 

  

init((unsigned char *)pix3->imageData,refhist,&refpts,updt,w,h); 
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obj[0]=w/2;obj[1]=h/2;obj[2]=80;obj[3]=60;obj[4]=obj[5]=1;obj[6]=obj[7]=0; 

  

rep(pix3,obj,w,h); 

 

} 

if(t>0) 

{ 

evolve((unsigned char *)pix3->imageData,updt,refhist,w,h); 

msrmtupdate((unsigned char *)pix3->imageData,updt,&refpts,refhist,w,h); 

 exobj(updt,obj); 

rep(pix3,obj,w,h); 

resample((unsigned char *)pix3->imageData,updt,0,w,h,t); 

} 

  

switch(FrameToProcess) 

 { 

case 0: memcpy((void *)sFrame0,pix3->imageData,pix2->imageSize);break; 

 case 1:memcpy((void *)sFrame1,pix3->imageData,pix2->imageSize);break; 

case 2:memcpy((void *)sFrame2,pix3->imageData,pix2->imageSize);break; 

case 3:memcpy((void *)sFrame3,pix3->imageData,pix2->imageSize); 

 } 

 //Do processing in here 

 //Set Semaphore to indicate that the frame is complete 

 semaphore_frames_completed = true; 

} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


